Hermann Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11831099/publications.pdf

Version: 2024-02-01

133	31,295	78 h-index	127
papers	citations		g-index
134	134 docs citations	134	24645
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	TLR7 Controls VSV Replication in CD169+ SCS Macrophages and Associated Viral Neuroinvasion. Frontiers in Immunology, 2019, 10, 466.	4.8	11
2	Conventional Dendritic Cells Confer Protection against Mouse Cytomegalovirus Infection via TLR9 and MyD88 Signaling. Cell Reports, 2016, 17, 1113-1127.	6.4	31
3	Human <scp>TLR</scp> 8 senses <scp>UR</scp> / <scp>URR</scp> motifs in bacterial and mitochondrial <scp>RNA</scp> . EMBO Reports, 2015, 16, 1656-1663.	4.5	110
4	A Single Naturally Occurring 2'-O-Methylation Converts a TLR7- and TLR8-Activating RNA into a TLR8-Specific Ligand. PLoS ONE, 2015, 10, e0120498.	2.5	25
5	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
6	Guanine Modification of Inhibitory Oligonucleotides Potentiates Their Suppressive Function. Journal of Immunology, 2013, 191, 3240-3253.	0.8	18
7	Toll-Like Receptors in Gastrointestinal Diseases. Digestive Diseases, 2012, 30, 74-77.	1.9	5
8	TLR13 Recognizes Bacterial 23 <i>S</i> rRNA Devoid of Erythromycin Resistance–Forming Modification. Science, 2012, 337, 1111-1115.	12.6	361
9	Innate immunity's path to the <scp>N</scp> obel <scp>P</scp> rize 2011 and beyond. European Journal of Immunology, 2012, 42, 1089-1092.	2.9	15
10	Toll-Like Receptors 2 and 4 Regulate the Frequency of IFN \hat{I}^3 -Producing CD4+ T-Cells during Pulmonary Infection with Chlamydia pneumoniae. PLoS ONE, 2011, 6, e26101.	2.5	9
11	New vistas on TLR9 activation. European Journal of Immunology, 2011, 41, 2814-2816.	2.9	6
12	Chlamydophila pneumoniae downregulates MHC-class II expression by two cell type-specific mechanisms. Molecular Microbiology, 2010, 76, 648-661.	2.5	2
13	Alternating $2\hat{a}\in^2$ -O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology, 2010, 215, 559-569.	1.9	82
14	Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe <i>Acinetobacter lwoffii</i> F78. Journal of Experimental Medicine, 2009, 206, 2869-2877.	8.5	301
15	Induction of Tumor Cell Apoptosis or Necrosis by Conditional Expression of Cell Death Proteins: Analysis of Cell Death Pathways and In Vitro Immune Stimulatory Potential. Journal of Immunology, 2009, 182, 4538-4546.	0.8	27
16	Sequence independent interferonâ€Î± induction by multimerized phosphodiester DNA depends on spatial regulation of Tollâ€like receptorâ€9 activation in plasmacytoid dendritic cells. Immunology, 2009, 126, 290-298.	4.4	16
17	The immunogenicity of CpG-antigen conjugates. Advanced Drug Delivery Reviews, 2009, 61, 243-247.	13.7	44
18	Extracellular and Intracellular Pattern Recognition Receptors Cooperate in the Recognition of Helicobacter pylori. Gastroenterology, 2009, 136, 2247-2257.	1.3	162

#	Article	IF	CITATIONS
19	Circumvention of regulatory CD4 ⁺ T cell activity during crossâ€priming strongly enhances T cellâ€mediated immunity. European Journal of Immunology, 2008, 38, 1585-1597.	2.9	24
20	The sweetness of the DNA backbone drives Toll-like receptor 9. Current Opinion in Immunology, 2008, 20, 396-400.	5.5	37
21	Vaccine protocols for enhanced immunogenicity of exogenous antigens. International Journal of Medical Microbiology, 2008, 298, 27-32.	3.6	20
22	The DNA Sugar Backbone 2′ Deoxyribose Determines Toll-like Receptor 9 Activation. Immunity, 2008, 28, 315-323.	14.3	245
23	Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE. Journal of Experimental Medicine, 2008, 205, 3007-3018.	8.5	467
24	Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9. Journal of Biological Chemistry, 2008, 283, 19879-19887.	3.4	80
25	Decreased Pathology and Prolonged Survival of Human DC-SIGN Transgenic Mice during Mycobacterial Infection. Journal of Immunology, 2008, 180, 6836-6845.	0.8	80
26	Innate Immunity to Pneumococcal Infection of the Central Nervous System Depends on Tollâ€Like Receptor (TLR) 2 and TLR4. Journal of Infectious Diseases, 2008, 198, 1028-1036.	4.0	119
27	Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. Journal of Clinical Investigation, 2008, 118, 1776-1784.	8.2	122
28	Natural DNA Recognition by Toll-Like Receptor 9 Does Not Rely upon CpG Motifs. , 2008, , 77-83.		0
29	Cellular Recognition of Trimyristoylated Peptide or Enterobacterial Lipopolysaccharide via Both TLR2 and TLR4. Journal of Biological Chemistry, 2007, 282, 13190-13198.	3.4	37
30	Polylactide-Coglycolide Microspheres CoEncapsulating Recombinant Tandem Prion Protein with CpG-Oligonucleotide Break Self-Tolerance to Prion Protein in Wild-Type Mice and Induce CD4 and CD8 T Cell Responses. Journal of Immunology, 2007, 179, 2797-2807.	0.8	50
31	MyD88-dependent changes in the pulmonary transcriptome after infection with <i>Chlamydia pneumoniae</i> . Physiological Genomics, 2007, 30, 134-145.	2.3	35
32	IL-6 and Maturation Govern TLR2 and TLR4 Induced TLR Agonist Tolerance and Cross-Tolerance in Dendritic Cells. Journal of Immunology, 2007, 179, 5811-5818.	0.8	66
33	Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. Journal of Experimental Medicine, 2007, 204, 57-63.	8.5	807
34	Acute Brain Injury Triggers MyD88-Dependent, TLR2/4-Independent Inflammatory Responses. American Journal of Pathology, 2007, 171, 200-213.	3.8	63
35	Toll-Like Receptor–Dependent Activation of Antigen-Presenting Cells Affects Adaptive Immunity to Helicobacter pylori. Gastroenterology, 2007, 133, 150-163.e3.	1.3	80
36	Interferonâ€regulatoryâ€factor 1 controls Tollâ€like receptor 9â€mediated IFNâ€Î² production in myeloid dendritic cells. European Journal of Immunology, 2007, 37, 315-327.	2.9	125

#	Article	IF	CITATIONS
37	Antigen coâ€encapsulated with adjuvants efficiently drive protective T cell immunity. European Journal of Immunology, 2007, 37, 2063-2074.	2.9	114
38	Endogenous TLR Ligands and Autoimmunity. Advances in Immunology, 2006, 91, 159-173.	2.2	117
39	Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guérin by Flt3-ligand generated dendritic cells. Immunobiology, 2006, 211, 557-565.	1.9	69
40	U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood, 2006, 107, 3229-3234.	1.4	241
41	Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 2006, 439, 204-207.	27.8	836
42	CpG motifâ€independent activation of TLR9 upon endosomal translocation of "naturalâ€ophosphodiester DNA. European Journal of Immunology, 2006, 36, 431-436.	2.9	106
43	Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. European Journal of Immunology, 2006, 36, 12-20.	2.9	153
44	Adenovirus efficiently transduces plasmacytoid dendritic cells resulting in TLR9-dependent maturation and IFN-α production. Journal of Gene Medicine, 2006, 8, 1300-1306.	2.8	99
45	All is not Toll: new pathways in DNA recognition. Journal of Experimental Medicine, 2006, 203, 265-268.	8.5	73
46	Toll-Like Receptor-Dependent Activation of Antigen Presenting Cells by Hsp60, gp96 and Hsp70., 2005, , 113-132.		7
47	Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. European Journal of Immunology, 2005, 35, 1557-1566.	2.9	183
48	Toll-like receptor 9 signaling can sensitize fibroblasts for apoptosis. Immunology Letters, 2005, 97, 115-122.	2.5	26
49	Murine TLR2 expression analysis and systemic antagonism by usage of specific monoclonal antibodies. Immunology Letters, 2005, 98, 200-207.	2.5	7
50	Protective CD8 T Cell Immunity Triggered by CpG-Protein Conjugates Competes with the Efficacy of Live Vaccines. Journal of Immunology, 2005, 174, 4373-4380.	0.8	93
51	Endosomal Translocation of Vertebrate DNA Activates Dendritic Cells via TLR9-Dependent and -Independent Pathways. Journal of Immunology, 2005, 174, 6129-6136.	0.8	239
52	Herpes simplex virus type-1 induces IFN- \hat{l}_{\pm} production via Toll-like receptor 9-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11416-11421.	7.1	403
53	Activation of tollâ€like receptorâ€9 induces progression of renal disease in MRLâ€Fas(lpr) mice. FASEB Journal, 2004, 18, 534-536.	0.5	204
54	The Major Surface Protein of <i>Wolbachia</i> Endosymbionts in Filarial Nematodes Elicits Immune Responses through TLR2 and TLR4. Journal of Immunology, 2004, 173, 437-445.	0.8	185

#	Article	IF	CITATIONS
55	CpG-DNA Aided Cross-Priming by Cross-Presenting B Cells. Journal of Immunology, 2004, 172, 1501-1507.	0.8	129
56	Induction of Nuclear Factorâ€'κB and câ€Jun/Activator Proteinâ€"1 via Tollâ€Like Receptor 2 in Macrophages by Antimycoticâ€TreatedCandida albicans. Journal of Infectious Diseases, 2004, 190, 1318-1326.	4.0	41
57	Of men, mice and pigs: looking at their plasmacytoid dentritic cells. Immunology, 2004, 112, 26-27.	4.4	28
58	Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Medicine, 2004, 10, 187-192.	30.7	417
59	Targeting split vaccines to the endosome improves vaccination. Current Opinion in Biotechnology, 2004, 15, 538-542.	6.6	14
60	Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. European Journal of Immunology, 2004, 34, 2541-2550.	2.9	470
61	Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. European Journal of Immunology, 2004, 34, 2863-2873.	2.9	89
62	Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood, 2004, 103, 1030-1032.	1.4	164
63	Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science, 2004, 303, 1526-1529.	12.6	3,413
64	Direct Toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Research, 2004, 6, R433.	2.0	75
65	The immunobiology of the TLR9 subfamily. Trends in Immunology, 2004, 25, 381-386.	6.8	311
66	Antagonistic antibody prevents toll-like receptor 2–driven lethal shock-like syndromes. Journal of Clinical Investigation, 2004, 113, 1473-1481.	8.2	181
67	IL-4 regulates IL-12 p40 expression post-transcriptionally as well as via a promoter-based mechanism. European Journal of Immunology, 2003, 33, 428-433.	2.9	7
68	The Tollâ€like receptor 7 (TLR7)â€specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. European Journal of Immunology, 2003, 33, 2987-2997.	2.9	487
69	The Gram-negative bacterium Chlamydia trachomatis L2 stimulates tumor necrosis factor secretion by innate immune cells independently of its endotoxin. Microbes and Infection, 2003, 5, 463-470.	1.9	41
70	Contribution of Toll-like receptors 2 and 4 in an oral Yersinia enterocolitica mouse infection model. International Journal of Medical Microbiology, 2003, 293, 341-348.	3.6	23
71	A Dominant Role of Toll-Like Receptor 4 in the Signaling of Apoptosis in Bacteria-Faced Macrophages. Journal of Immunology, 2003, 171, 4294-4303.	0.8	124
72	Cutting Edge: Toll-Like Receptor 9 Expression Is Not Required for CpG DNA-Aided Cross-Presentation of DNA-Conjugated Antigens but Essential for Cross-Priming of CD8 T Cells. Journal of Immunology, 2003, 170, 2802-2805.	0.8	92

#	Article	IF	CITATIONS
73	Differential Contribution of Toll-Like Receptors 4 and 2 to the Cytokine Response to <i>Salmonella enterica</i> Serovar Typhimurium and <i>Staphylococcus aureus</i> i>in Mice. Infection and Immunity, 2003, 71, 6058-6062.	2.2	72
74	Cellular Recognition of Tri-/Di-palmitoylated Peptides Is Independent from a Domain Encompassing the N-terminal Seven Leucine-rich Repeat (LRR)/LRR-like Motifs of TLR2. Journal of Biological Chemistry, 2003, 278, 39822-39829.	3.4	66
75	Vaccination with Plasmid DNA Activates Dendritic Cells via Toll-Like Receptor 9 (TLR9) but Functions in TLR9-Deficient Mice. Journal of Immunology, 2003, 171, 5908-5912.	0.8	189
76	Toll-Like Receptor 2 Participates in Mediation of Immune Response in Experimental Pneumococcal Meningitis. Journal of Immunology, 2003, 170, 438-444.	0.8	208
77	Compartmentalized Production of CCL17 In Vivo. Journal of Experimental Medicine, 2003, 197, 585-599.	8.5	169
78	Heat shock protein-mediated activation of innate immune cells. , 2003, , 43-54.		1
79	Cutting Edge: Myeloid Differentiation Factor 88 Deficiency Improves Resistance Against Sepsis Caused by Polymicrobial Infection. Journal of Immunology, 2002, 169, 2823-2827.	0.8	141
80	Caspase-9/-3 Activation and Apoptosis Are Induced in Mouse Macrophages upon Ingestion and Digestion of <i>Escherichia coli </i> /i>Bacteria. Journal of Immunology, 2002, 169, 3172-3179.	0.8	52
81	HSP70 as Endogenous Stimulus of the Toll/Interleukin-1 Receptor Signal Pathway. Journal of Biological Chemistry, 2002, 277, 15107-15112.	3.4	827
82	The Endoplasmic Reticulum-resident Heat Shock Protein Gp96 Activates Dendritic Cells via the Toll-like Receptor 2/4 Pathway. Journal of Biological Chemistry, 2002, 277, 20847-20853.	3.4	429
83	Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Current Opinion in Microbiology, 2002, 5, 62-69.	5.1	182
84	Human and mouse plasmacytoid dendritic cells. Human Immunology, 2002, 63, 1103-1110.	2.4	102
85	Generation of neutralizing mouse anti-mouse IL-18 antibodies for inhibition of inflammatory responses in vivo. Journal of Immunological Methods, 2002, 259, 149-157.	1.4	17
86	Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. European Journal of Immunology, 2002, 32, 1958.	2.9	676
87	CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. European Journal of Immunology, 2002, 32, 2356.	2.9	158
88	Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae. European Journal of Immunology, 2002, 32, 2460-2470.	2.9	91
89	Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nature Immunology, 2002, 3, 499-499.	14.5	875
90	Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes and Infection, 2002, 4, 1281-1290.	1.9	151

#	Article	IF	Citations
91	Toll Meets Bacterial CpG-DNA. Immunity, 2001, 14, 499-502.	14.3	168
92	Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nature Immunology, 2001, 2, 346-352.	14.5	637
93	IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nature Immunology, 2001, 2, 1054-1060.	14.5	262
94	Bacterial CpG-DNA Triggers Activation and Maturation of Human CD11câ^', CD123+ Dendritic Cells. Journal of Immunology, 2001, 166, 5000-5007.	0.8	277
95	Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells. Journal of Biological Chemistry, 2001, 276, 31332-31339.	3.4	728
96	Predominant Role of Toll-Like Receptor 2 Versus 4 in <i>Chlamydia ⟨i⟩â€^<i>pneumoniae ⟨i⟩-Induced Activation of Dendritic Cells. Journal of Immunology, 2001, 167, 3316-3323.</i></i>	0.8	164
97	The role of immunostimulatory CpG-DNA in septic shock. , 2001, , 167-171.		0
98	Immunostimulatory DNA sequences help to eradicate intracellular pathogens., 2001,, 147-152.		4
99	Bacterial CpG-DNA activates dendritic cellsin vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. European Journal of Immunology, 2000, 30, 3591-3597.	2.9	161
100	Causing a commotion in the blood: immunotherapy progresses from bacteria to bacterial DNA. Trends in Immunology, 2000, 21, 521-526.	7.5	117
101	A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408, 740-745.	27.8	5,827
102	Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells. Experimental Hematology, 2000, 28, 558-568.	0.4	89
103	The role of immunostimulatory CpG-DNA in septic shock. Seminars in Immunopathology, 2000, 22, 167-171.	4.0	11
104	Immunostimulatory DNA sequences help to eradicate intracellular pathogens. Seminars in Immunopathology, 2000, 22, 147-152.	4.0	5
105	Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood, 2000, 95, 999-1006.	1.4	202
106	Immune Cell Activation by Bacterial Cpg-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor–Associated Factor (Traf)6. Journal of Experimental Medicine, 2000, 192, 595-600.	8.5	434
107	Increased Resistance Against Acute Polymicrobial Sepsis in Mice Challenged with Immunostimulatory CpG Oligodeoxynucleotides Is Related to an Enhanced Innate Effector Cell Response. Journal of Immunology, 2000, 165, 4537-4543.	0.8	123
108	CpG-DNA-Mediated Transient Lymphadenopathy Is Associated with a State of Th1 Predisposition to Antigen-Driven Responses. Journal of Immunology, 2000, 165, 1228-1235.	0.8	127

#	Article	IF	CITATIONS
109	CpG-DNA Activates In Vivo T Cell Epitope Presenting Dendritic Cells to Trigger Protective Antiviral Cytotoxic T Cell Responses. Journal of Immunology, 2000, 164, 2372-2378.	0.8	123
110	Role of Interleukin-18 (IL-18) during Lethal Shock: Decreased Lipopolysaccharide Sensitivity but Normal Superantigen Reaction in IL-18-Deficient Mice. Infection and Immunity, 2000, 68, 3502-3508.	2.2	68
111	Bacterial CpG DNA Activates Immune Cells to Signal Infectious Danger. Advances in Immunology, 1999, 73, 329-368.	2.2	269
112	CpG-DNA upregulates the major acute-phase proteins SAA and SAP. Cellular Microbiology, 1999, 1, 61-67.	2.1	15
113	The resistance againstListeria monocytogenes and the formation of germinal centers depend on a functional death domain of the 55 kDa tumor necrosis factor receptor. European Journal of Immunology, 1999, 29, 581-591.	2.9	16
114	CpG-oligodeoxynucleotides co-stimulate primary T cells in the absence of antigen-presenting cells. European Journal of Immunology, 1999, 29, 1209-1218.	2.9	155
115	Guanosine-rich oligodeoxynucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. European Journal of Immunology, 1999, 29, 3496-3506.	2.9	30
116	Guanosine-rich oligodeoxynucleotides induce proliferation of macrophage progenitors in cultures of murine bone marrow cells. European Journal of Immunology, 1999, 29, 3496-3506.	2.9	8
117	CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO Journal, 1998, 17, 6230-6240.	7.8	590
118	Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. European Journal of Immunology, 1998, 28, 2045-2054.	2.9	744
119	Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells., 1998, 28, 2045.		6
120	Bacterial DNA causes septic shock. Nature, 1997, 386, 336-337.	27.8	408
121	Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factorâ€Î±â€mediated shock. European Journal of Immunology, 1997, 27, 1671-1679.	2.9	402
122	CpGâ€containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: A new class of vaccine adjuvants. European Journal of Immunology, 1997, 27, 2340-2344.	2.9	354
123	Immunostimulatory DNA: Sequence-dependent production of potentially harmful or useful cytokines. European Journal of Immunology, 1997, 27, 3420-3426.	2.9	244
124	HLA-A2-restricted peripheral blood cytolytic T lymphocyte response to HPV type 16 proteins E6 and E7 from patients with neoplastic cervical lesions. Cancer Immunology, Immunotherapy, 1996, 42, 151-160.	4.2	50
125	Mechanisms of peripheral T cell deletion: anergized T cells are Fas resistant but undergo proliferation-associated apoptosis. European Journal of Immunology, 1996, 26, 1459-1467.	2.9	40
126	Exogenous superantigens acutely trigger distinct levels of peripheral T cell tolerance/immunosuppression: Dose-response relationship. European Journal of Immunology, 1994, 24, 1893-1902.	2.9	49

#	Article	IF	CITATIONS
127	Vaccination with immunodominant peptides encapsulated in Quil A-containing liposomes induces peptide-specific primary CD8+ cytotoxic T cells. Vaccine, 1994, 12, 73-80.	3.8	79
128	Clonal deletion as direct consequence of anin vivo T cell response to bacterial superantigen. European Journal of Immunology, 1993, 23, 1197-1200.	2.9	72
129	Vaccination of class I major histocompatibility complex (MHC)-restricted murine CD8+ cytotoxic T lymphocytes towards soluble antigens: immunostimulating-ovalbumin complexes enter the class I MHC-restricted antigen pathway and allow sensitization against the immunodominant peptide. European lournal of Immunology, 1991, 21, 1523-1527.	2.9	95
130	Dissection of signals controlling T cell function and activation: H7, an inhibitor of protein kinase C, blocks induction of primary T cell proliferation by suppressing interleukin (IL) 2 receptor expression without affecting IL 2 production. European Journal of Immunology, 1991, 21, 1575-1582.	2.9	14
131	Plasmodium falciparum merozoites primarily stimulate the $V\hat{I}^39$ subset of human \hat{I}^3/\hat{I}^7 T cells. European Journal of Immunology, 1991, 21, 2613-2616.	2.9	102
132	Primary responses of human T cells to mycobacteria: a frequent set of $\hat{I}^3\hat{I}$ T cells are stimulated by protease-resistant ligands. European Journal of Immunology, 1990, 20, 1175-1179.	2.9	272
133	Toll-like Receptors. , 0, , 119-127.		0