Göran Gellerstedt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11830332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modified ionization difference UV–vis method for fast quantitation of guaiacyl-type phenolic hydroxyl groups in lignin. International Journal of Biological Macromolecules, 2022, 201, 330-337.	3.6	8
2	Softwood kraft lignin: Raw material for the future. Industrial Crops and Products, 2015, 77, 845-854.	2.5	198
3	Understanding Pulp Delignification by Laccase–Mediator Systems through Isolation and Characterization of Lignin–Carbohydrate Complexes. Biomacromolecules, 2013, 14, 3073-3080.	2.6	44
4	A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. Journal of Applied Polymer Science, 2013, 128, 3824-3830.	1.3	164
5	Universal fractionation of lignin–carbohydrate complexes (<scp>LCC</scp> s) from lignocellulosic biomass: an example using spruce wood. Plant Journal, 2013, 74, 328-338.	2.8	107
6	Lignin Recovery and Lignin-Based Products. RSC Green Chemistry, 2012, , 180-210.	0.0	9
7	Oxidative stabilisation of kraft lignin for carbon fibre production. Holzforschung, 2012, 66, 141-147.	0.9	87
8	On hexenuronic acid (HexA) removal and mediator coupling to pulp fiber in the laccase/mediator treatment. Bioresource Technology, 2011, 102, 3911-3917.	4.8	42
9	Fractionation and characterization of lignin-carbohydrate complexes (LCCs) from eucalyptus fibers. Holzforschung, 2011, 65, 43-50.	0.9	43
10	Chemistry of Alkaline Pulping. , 2010, , 349-391.		17
11	The behavior of kraft lignin during thermal treatment. Journal of Analytical and Applied Pyrolysis, 2010, 87, 70-77.	2.6	103
12	Oxidative polymerisation of models for phenolic lignin end-groups by laccase. Holzforschung, 2010, 64, .	0.9	49
13	Fractionation, analysis, and PCA modeling of properties of four technical lignins for prediction of their application potential in binders. Holzforschung, 2010, 64, .	0.9	95
14	ORIGINAL RESEARCH: Sulfonation of phenolic end groups in lignin directs laccase-initiated reactions towards cross-linking. Industrial Biotechnology, 2010, 6, 50-59.	0.5	11
15	The Wood-Based Biorefinery: A Source of Carbon Fiber?. Open Agriculture Journal, 2010, 4, 119-124.	0.3	87
16	Kraft lignin as feedstock for chemical products: The effects of membrane filtration. Holzforschung, 2009, 63, 290-297.	0.9	105
17	Structural Characterization of the Lignin from Jute (<i>Corchorus capsularis</i>) Fibers. Journal of Agricultural and Food Chemistry, 2009, 57, 10271-10281.	2.4	163
18	Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Industrial Crops and Products, 2008, 27, 175-181.	2.5	137

GöRAN GELLERSTEDT

#	Article	IF	CITATIONS
19	Lignins: Major Sources, Structure and Properties. , 2008, , 201-224.		124
20	Chemical Structures Present in Biofuel Obtained from Lignin. Energy & amp; Fuels, 2008, 22, 4240-4244.	2.5	100
21	Lignin-carbohydrate network in wood and pulps: A determinant for reactivity. Holzforschung, 2007, 61, 668-674.	0.9	43
22	Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magnetic Resonance in Chemistry, 2007, 45, 37-45.	1.1	208
23	An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides. Carbohydrate Research, 2007, 342, 1442-1449.	1.1	89
24	Radical coupling – A major obstacle to delignification in kraft pulping. Nordic Pulp and Paper Research Journal, 2006, 21, 129-134.	0.3	14
25	Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung, 2006, 60, 156-161.	0.9	133
26	Characterization of lignin-carbohydrate complexes from spruce sulfite pulp. Holzforschung, 2006, 60, 162-165.	0.9	51
27	Carbohydrate Reactions During High-Temperature Steam Treatment of Aspen Wood. Applied Biochemistry and Biotechnology, 2005, 125, 175-188.	1.4	85
28	Structural Differences between the Ligninâ^'Carbohydrate Complexes Present in Wood and in Chemical Pulps. Biomacromolecules, 2005, 6, 3467-3473.	2.6	264
29	Changes in the lignin-carbohydrate complex in softwood kraft pulp during kraft and oxygen delignification. Holzforschung, 2004, 58, 603-610.	0.9	74
30	Towards a new concept of lignin condensation in kraft pulping. Initial results. Comptes Rendus - Biologies, 2004, 327, 817-826.	0.1	66
31	The formation of β–β structures in lignin biosynthesis—are there two different pathways?. Organic and Biomolecular Chemistry, 2003, 1, 3621-3624.	1.5	46
32	Some factors affecting the brightness and TCF-bleachability of kraft pulp. Nordic Pulp and Paper Research Journal, 2003, 18, 56-62.	0.3	7
33	Polymerization of Monolignols by Redox Shuttle–Mediated Enzymatic Oxidation. Plant Cell, 2002, 14, 1953-1962.	3.1	109
34	On chromophores and leucochromophores formed during the refining of wood. Nordic Pulp and Paper Research Journal, 2002, 17, 5-8a.	0.3	14
35	The distribution of oxidizable structures in ECFand TCF-bleached kraft pulps. Nordic Pulp and Paper Research Journal, 2002, 17, 415-419.	0.3	17
36	Chemistry of TCF-Bleaching with Oxygen and Hydrogen Peroxide. ACS Symposium Series, 2001, , 61-72.	0.5	15

#	Article	IF	CITATIONS
37	Title is missing!. Cellulose, 2001, 8, 289-296.	2.4	32
38	NON-DESIRABLE CARBOHYDRATE REACTIONS IN PULPING AND BLEACHING. , 2001, , 347-356.		0
39	NMR observation of a new lignin structure, a spiro-dienoneElectronic supplementary information (ESI) available: 13C, QUAT, HMBC and HSQC NMR spectra. See http://www.rsc.org/suppdata/cc/b1/b108285j/. Chemical Communications, 2001, , 2744-2745.	2.2	74
40	Brightness and kappa number – important variables to secure appropriate control of chemical charges in TCF- and ECF-bleaching sequences. Nordic Pulp and Paper Research Journal, 2000, 15, 216-220.	0.3	4
41	Reduced brightness variations by extended oxygen delignification. Nordic Pulp and Paper Research Journal, 2000, 15, 211-215.	0.3	1
42	Degradation of Guaiacylglycerol-β-Guaiacyl Ether in the Presence of NaHS or Polysulphide at Various Alkalinities. Part II. Liberation of Coniferyl Alcohol and Sulphur. Holzforschung, 1998, 52, 481-489.	0.9	7
43	Kinetics and mechanism of kappa number determination. Nordic Pulp and Paper Research Journal, 1998, 13, 147-152.	0.3	17
44	On the structural significance of the kappa number measurement. Nordic Pulp and Paper Research Journal, 1998, 13, 153-158.	0.3	51
45	The contribution to kappa number from hexeneuronic acid groups in pulp xylan. Carbohydrate Research, 1997, 302, 213-218.	1.1	112
46	An HPLC method for the quantitative determination of hexeneuronic acid groups in chemical pulps. Carbohydrate Research, 1996, 294, 41-51.	1.1	50
47	Reactions of lignin in chlorine dioxide bleaching of kraft pulps. Research on Chemical Intermediates, 1995, 21, 441-456.	1.3	11
48	The reactivity of different fiber wall fractions in gas-phase and liquid-phase sulfite impregnation of wood. Nordic Pulp and Paper Research Journal, 1995, 10, 190-196.	0.3	0
49	Formation of Leucochromophores during High-Yield Pulping and H ₂ O ₂ Bleaching. ACS Symposium Series, 1993, , 129-146.	0.5	8
50	Reactive lignin structures in high yield pulping. Nordic Pulp and Paper Research Journal, 1992, 7, 75-80.	0.3	5
51	Reactive lignin structures in high yield pulping. Nordic Pulp and Paper Research Journal, 1991, 6, 136-139.	0.3	15
52	Structural Changes in Lignin During Kraft Cooking. Part 5. Analysis of Dissolved Lignin by Oxidative Degradation. Journal of Wood Chemistry and Technology, 1987, 7, 65-80.	0.9	52
53	On the formation of enol ether structures in lignin during kraft cooking. Nordic Pulp and Paper Research Journal, 1987, 2, 71-75.	0.3	35
54	Quantitative 13C NMR Analysis of Kraft Lignins Acta Chemica Scandinavica, 1987, 41b, 541-546.	0.7	50

#	Article	IF	CITATIONS
55	Structural Changes in Lignin During Kraft Pulping. Holzforschung, 1984, 38, 151-158.	0.9	181
56	Structural Changes in Lignin During Kraft Cooking Part 3. On the Structure of Dissolved Lignins. Journal of Wood Chemistry and Technology, 1984, 4, 239-263.	0.9	98