Soumen Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11829511/publications.pdf Version: 2024-02-01

SOLIMEN DAS

#	Article	IF	CITATIONS
1	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	16.0	3,063
2	PEGylated Inorganic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 1980-1994.	7.2	455
3	Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine, 2013, 8, 1483-1508.	1.7	424
4	Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano, 2015, 2, 33-53.	2.2	341
5	Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 2013, 34, 2194-2201.	5.7	301
6	Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 558-569.	1.7	269
7	The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in in intracellular environments. Biomaterials, 2012, 33, 7746-7755.	5.7	247
8	Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Scientific Reports, 2015, 5, 15613.	1.6	227
9	Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials, 2011, 32, 2918-2929.	5.7	208
10	Cellular Interaction and Toxicity Depend on Physicochemical Properties and Surface Modification of Redox-Active Nanomaterials. ACS Nano, 2013, 7, 4855-4868.	7.3	179
11	Oxygenated Functional Group Density on Graphene Oxide: Its Effect on Cell Toxicity. Particle and Particle Systems Characterization, 2013, 30, 148-157.	1.2	173
12	Downregulation of Tumor Growth and Invasion by Redox-Active Nanoparticles. Antioxidants and Redox Signaling, 2013, 19, 765-778.	2.5	167
13	Nanomaterials for wound healing: scope and advancement. Nanomedicine, 2015, 10, 2593-2612.	1.7	160
14	Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of AÎ ² aggregates modulate neuronal survival pathways. Acta Biomaterialia, 2012, 8, 2056-2067.	4.1	145
15	Combination of Conventional Chemotherapeutics with Redox-Active Cerium Oxide Nanoparticles—A Novel Aspect in Cancer Therapy. Molecular Cancer Therapeutics, 2014, 13, 1740-1749.	1.9	127
16	Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chemical Communications, 2010, 46, 6915.	2.2	118
17	Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer, 2016, 16, 220.	1.1	111
18	Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. Journal of Materials Chemistry B, 2016, 4, 3195-3202.	2.9	111

SOUMEN DAS

#	Article	IF	CITATIONS
19	Behavior of nanoceria in biologically-relevant environments. Environmental Science: Nano, 2014, 1, 516-532.	2.2	94
20	Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale, 2017, 9, 10375-10387.	2.8	86
21	Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 439-448.	1.7	84
22	Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles. PLoS ONE, 2013, 8, e62816.	1.1	80
23	Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles. Nanoscale, 2013, 5, 6063.	2.8	71
24	Inhibition of Nanoceria's Catalytic Activity due to Ce ³⁺ Site-Specific Interaction with Phosphate Ions. Journal of Physical Chemistry C, 2014, 118, 18992-19006.	1.5	63
25	Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1223-1231.	1.7	57
26	MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligo. Journal of Investigative Dermatology, 2017, 137, 1965-1974.	0.3	55
27	Structure–Activity Map of Ceria Nanoparticles, Nanocubes, and Mesoporous Architectures. Chemistry of Materials, 2016, 28, 7287-7295.	3.2	53
28	A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity. Nanoscale, 2012, 4, 2597.	2.8	48
29	One-pot synthesis of a ceria–graphene oxide composite for the efficient removal of arsenic species. Nanoscale, 2017, 9, 3367-3374.	2.8	48
30	Morphological Phase Diagram of Biocatalytically Active Ceria Nanostructures as a Function of Processing Variables and Their Properties. ChemPlusChem, 2013, 78, 1446-1455.	1.3	45
31	Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Experimental Neurology, 2015, 273, 151-160.	2.0	43
32	Therapeutic potential of nanoceria in regenerative medicine. MRS Bulletin, 2014, 39, 976-983.	1.7	42
33	Cerium oxide nanoparticles at the nano-bio interface: size-dependent cellular uptake. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 956-963.	1.9	38
34	Engineered nanoceria cytoprotection <i>in vivo</i> : mitigation of reactive oxygen species and double-stranded DNA breakage due to radiation exposure. Nanoscale, 2018, 10, 21069-21075.	2.8	37
35	Cerium Oxide Nanoparticles Sensitize Pancreatic Cancer to Radiation Therapy through Oxidative Activation of the JNK Apoptotic Pathway. Cancers, 2018, 10, 303.	1.7	33
36	Colorimetric detection of epinephrine using an optimized paper-based aptasensor. RSC Advances, 2017, 7, 49133-49143.	1.7	30

SOUMEN DAS

#	Article	IF	CITATIONS
37	Picomolar Detection of Hydrogen Peroxide using Enzyme-free Inorganic Nanoparticle-based Sensor. Scientific Reports, 2017, 7, 1324.	1.6	30
38	Redox-active nanoceria depolarize mitochondrial membrane of human colon cancer cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	27
39	Electrochemical study of nanoporous gold revealing anti-biofouling properties. RSC Advances, 2015, 5, 46501-46508.	1.7	27
40	Modulating the Catalytic Activity of Cerium Oxide Nanoparticles with the Anion of the Precursor Salt. Journal of Physical Chemistry C, 2017, 121, 20039-20050.	1.5	26
41	Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. Environmental Toxicology, 2017, 32, 904-917.	2.1	22
42	Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling. 2D Materials, 2017, 4, 025077.	2.0	21
43	Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity. ACS Applied Materials & Interfaces, 2014, 6, 5472-5482.	4.0	20
44	The Change in Antioxidant Properties of Dextran oated Redox Active Nanoparticles Due to Synergetic Photoreduction–Oxidation. Chemistry - A European Journal, 2015, 21, 12646-12656.	1.7	13
45	Adjuvants in micro―to nanoscale: current state and future direction. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 61-84.	3.3	11
46	Redox-active nanoparticles in combating neurodegeneration. Nanomedicine, 2014, 9, 2725-2728.	1.7	9
47	Selfâ€Assembly of PEGâ€Coated Ceria Nanoparticles Shows Dependence on PEG Molecular Weight and Ageing. ChemPlusChem, 2015, 80, 1680-1690.	1.3	5
48	Highâ€Throughput, Proteinâ€Targeted Biomolecular Detection Using Frequencyâ€Domain Faraday Rotation Spectroscopy. Small, 2017, 13, 1602862.	5.2	5
49	Morphological Phase Diagram of Biocatalytically Active Ceria Nanostructures as a Function of Processing Variables and Their Properties. ChemPlusChem, 2013, 78, 1424-1424.	1.3	1
50	2D MoS <inf>2</inf> /glassy carbon based electrochemical sensor for pico-molar detection of hydrogen peroxide and hypochlorous acid. , 2016, , .		1
51	3D tissue engineered micro-tumors for optical-based therapeutic screening platform. , 2016, , .		0