Stefan Ståhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11828929/publications.pdf

Version: 2024-02-01

140 papers 8,481 citations

47006 47 h-index 49909 87 g-index

141 all docs

141 docs citations

times ranked

141

6214 citing authors

#	Article	IF	CITATIONS
1	Transferrin Receptor Binding BBB-Shuttle Facilitates Brain Delivery of Anti-AÎ 2 -Affibodies. Pharmaceutical Research, 2022, , 1.	3.5	1
2	Targeting Tumor Cells Overexpressing the Human Epidermal Growth Factor Receptor 3 with Potent Drug Conjugates Based on Affibody Molecules. Biomedicines, 2022, 10, 1293.	3.2	2
3	HER3 PET Imaging: 68Ga-Labeled Affibody Molecules Provide Superior HER3 Contrast to 89Zr-Labeled Antibody and Antibody-Fragment-Based Tracers. Cancers, 2021, 13, 4791.	3.7	6
4	Discovery, optimization and biodistribution of an Affibody molecule for imaging of CD69. Scientific Reports, 2021, 11, 19151.	3.3	8
5	Evaluating the Therapeutic Efficacy of Mono- and Bivalent Affibody-Based Fusion Proteins Targeting HER3 in a Pancreatic Cancer Xenograft Model. Pharmaceutics, 2020, 12, 551.	4.5	9
6	Benefit of Later-Time-Point PET Imaging of HER3 Expression Using Optimized Radiocobalt-Labeled Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1972.	4.1	9
7	Influence of Residualizing Properties of the Radiolabel on Radionuclide Molecular Imaging of HER3 Using Affibody Molecules. International Journal of Molecular Sciences, 2020, 21, 1312.	4.1	7
8	An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor. International Journal of Molecular Sciences, 2020, 21, 2999.	4.1	12
9	Optimization of HER3 expression imaging using affibody molecules: Influence of chelator for labeling with indium-111. Scientific Reports, 2019, 9, 655.	3.3	18
10	Affibody-Mediated Sequestration of Amyloid β Demonstrates Preventive Efficacy in a Transgenic Alzheimer's Disease Mouse Model. Frontiers in Aging Neuroscience, 2019, 11, 64.	3.4	16
11	Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Scientific Reports, 2019, 9, 6779.	3.3	8
12	Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers. International Journal of Molecular Sciences, 2019, 20, 1080.	4.1	21
13	Increase in negative charge of 68Ga/chelator complex reduces unspecific hepatic uptake but does not improve imaging properties of HER3-targeting affibody molecules. Scientific Reports, 2019, 9, 17710.	3.3	14
14	Autotransporterâ€Mediated Display of a Naìve Affibody Library on the Outer Membrane of <i>Escherichia coli</i> . Biotechnology Journal, 2019, 14, e1800359.	3.5	9
15	Affibodyâ€'mediated imaging of EGFR expression in prostate cancer using radiocobaltâ€'labeled DOTAâ€'ZEGFR:2377. Oncology Reports, 2018, 41, 534-542.	2.6	4
16	Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics, 2018, 8, 4462-4476.	10.0	25
17	Influence of Molecular Design on the Targeting Properties of ABD-Fused Mono- and Bi-Valent Anti-HER3 Affibody Therapeutic Constructs. Cells, 2018, 7, 164.	4.1	19
18	Evaluation of the Therapeutic Potential of a HER3-Binding Affibody Construct TAM-HER3 in Comparison with a Monoclonal Antibody, Seribantumab. Molecular Pharmaceutics, 2018, 15, 3394-3403.	4.6	19

#	Article	IF	Citations
19	In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic affibody construct. Scientific Reports, 2017, 7, 43118.	3.3	20
20	Affibody Molecules in Biotechnological and Medical Applications. Trends in Biotechnology, 2017, 35, 691-712.	9.3	259
21	Identification of proteins that specifically recognize and bind protofibrillar aggregates of amyloid- \hat{l}^2 . Scientific Reports, 2017, 7, 5949.	3.3	17
22	Staphylococcus carnosus: from starter culture to protein engineering platform. Applied Microbiology and Biotechnology, 2017, 101, 8293-8307.	3.6	36
23	Flowâ€cytometric screening of aggregationâ€inhibitors using a fluorescenceâ€assisted intracellular method. Biotechnology Journal, 2017, 12, 1600364.	3.5	3
24	Evaluation of a radiocobalt-labelled affibody molecule for imaging of human epidermal growth factor receptor 3 expression. International Journal of Oncology, 2017, 51, 1765-1774.	3.3	10
25	P3-050: An Affibody to Monomeric $\hat{Al^2}$ as a Novel Therapeutic Approach for Alzheimer's Disease Pathology. , 2016, 12, P835-P836.		1
26	PET imaging of epidermal growth factor receptor expression in tumours using 89Zr-labelled ZEGFR:2377 affibody molecules. International Journal of Oncology, 2016, 48, 1325-1332.	3.3	50
27	Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs, 2016, 8, 1195-1209.	5.2	37
28	Preclinical PET imaging of EGFR levels: pairing a targeting with a non-targeting Sel-tagged Affibody-based tracer to estimate the specific uptake. EJNMMI Research, 2016, 6, 58.	2.5	13
29	Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator. International Journal of Oncology, 2016, 49, 2285-2293.	3.3	27
30	Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cellular and Molecular Life Sciences, 2016, 73, 1671-1683.	5.4	18
31	Affibody-mediated PET imaging of HER3 expression in malignant tumours. Scientific Reports, 2015, 5, 15226.	3.3	56
32	A truncated and dimeric format of an Affibody library on bacteria enables FACSâ€mediated isolation of amyloidâ€beta aggregation inhibitors with subnanomolar affinity. Biotechnology Journal, 2015, 10, 1707-1718.	3 . 5	35
33	An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Microbial Cell Factories, 2014, 13, 179.	4.0	19
34	¹⁸⁸ Re-Z _{HER2:V2} , a Promising Affibody-Based Targeting Agent Against HER2-Expressing Tumors: Preclinical Assessment. Journal of Nuclear Medicine, 2014, 55, 1842-1848.	5 . O	23
35	Engineering of a bispecific affibody molecule towards HER2 and HER3 by addition of an albuminâ€binding domain allows for affinity purification and in vivo halfâ€life extension. Biotechnology Journal, 2014, 9, 1215-1222.	3.5	46
36	Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with 188Re. European Journal of Medicinal Chemistry, 2014, 87, 519-528.	5 . 5	19

#	Article	IF	CITATIONS
37	Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1450-1459.	6.4	40
38	Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity. Scientific Reports, 2014, 4, 7518.	3.3	31
39	Design and evaluation of radiolabeled tracers for tumor imaging. Biotechnology and Applied Biochemistry, 2013, 60, 365-383.	3.1	15
40	Staphylococcal display for combinatorial protein engineering of a headâ€ŧoâ€ŧail affibody dimer binding the Alzheimer amyloidâ€Î² peptide. Biotechnology Journal, 2013, 8, 139-145.	3.5	14
41	Affinity proteins and their generation. Journal of Chemical Technology and Biotechnology, 2013, 88, 25-38.	3.2	16
42	Subunit Vaccine Candidates Engineered from the Central Conserved Region of the RSV G Protein Aimed for Parenteral or Mucosal Delivery., 2013,, 103-118.		1
43	Inhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification. PLoS ONE, 2013, 8, e62791.	2.5	61
44	HER2-Positive Tumors Imaged Within 1 Hour Using a Site-Specifically ¹¹ C-Labeled Sel-Tagged Affibody Molecule. Journal of Nuclear Medicine, 2012, 53, 1446-1453.	5.0	29
45	Generation and Evaluation of Bispecific Affibody Molecules for Simultaneous Targeting of EGFR and HER2. Bioconjugate Chemistry, 2012, 23, 1802-1811.	3.6	26
46	Cellular Effects of HER3-Specific Affibody Molecules. PLoS ONE, 2012, 7, e40023.	2.5	39
47	Evaluation of a HER2-targeting affibody molecule combining an N-terminal HEHEHE-tag with a GGGC chelator for 99mTc-labelling at the C terminus. Tumor Biology, 2012, 33, 641-651.	1.8	21
48	Order of amino acids in C-terminal cysteine-containing peptide-based chelators influences cellular processing and biodistribution of 99mTc-labeled recombinant Affibody molecules. Amino Acids, 2012, 42, 1975-1985.	2.7	16
49	Surface Display on Gram Positive Bacteria. Combinatorial Chemistry and High Throughput Screening, 2012, 4, 171-184.	1.1	25
50	Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody molecule as capture ligand. Protein Expression and Purification, 2011, 76, 127-135.	1.3	32
51	Non-immunoglobulin based protein scaffolds. Current Opinion in Biotechnology, 2011, 22, 843-848.	6.6	128
52	Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules. Protein Engineering, Design and Selection, 2011, 24, 385-396.	2.1	62
53	Molecular Design and Optimization of ^{99m} Tc-Labeled Recombinant Affibody Molecules Improves Their Biodistribution and Imaging Properties. Journal of Nuclear Medicine, 2011, 52, 461-469.	5.0	80
54	Sequestration of the $\hat{Al^2}$ Peptide Prevents Toxicity and Promotes Degradation In Vivo. PLoS Biology, 2010, 8, e1000334.	5.6	70

#	Article	IF	Citations
55	Staphylococcal Surface Display in Combinatorial Protein Engineering and Epitope Mapping of Antibodies. Recent Patents on Biotechnology, 2010, 4, 171-182.	0.8	22
56	Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry. Journal of Nuclear Medicine, 2009, 50, 274-283.	5.0	98
57	Engineered affinity proteins—Generation and applications. Journal of Biotechnology, 2009, 140, 254-269.	3.8	103
58	Generation of tumourâ€necrosisâ€factorâ€Î±â€specific affibody ¹ molecules capable of blocking receptor binding <i>in vitro</i> . Biotechnology and Applied Biochemistry, 2009, 54, 93-103.	3.1	33
59	Engineering and characterization of a bispecific HER2 × EGFRâ€binding affibody molecule. Biotechnology and Applied Biochemistry, 2009, 54, 121-131.	3.1	58
60	Engineered affinity proteins for tumourâ€targeting applications. Biotechnology and Applied Biochemistry, 2009, 53, 1-29.	3.1	65
61	Generation of Affibody \hat{A}^{\otimes} ligands binding interleukin-2 receptor $\hat{I}_{\pm}/CD25$. Biotechnology and Applied Biochemistry, 2008, 50, 97.	3.1	18
62	Simplified characterization through site-specific protease-mediated release of affinity proteins selected by staphylococcal display. FEMS Microbiology Letters, 2008, 278, 128-136.	1.8	12
63	Epitope mapping of antibodies using bacterial surface display. Nature Methods, 2008, 5, 1039-1045.	19.0	90
64	Directed Evolution to Low Nanomolar Affinity of a Tumor-Targeting Epidermal Growth Factor Receptor-Binding Affibody Molecule. Journal of Molecular Biology, 2008, 376, 1388-1402.	4.2	138
65	Stabilization of a \hat{I}^2 -hairpin in monomeric Alzheimer's amyloid- \hat{I}^2 peptide inhibits amyloid formation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5099-5104.	7.1	375
66	A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry. Protein Engineering, Design and Selection, 2008, 21, 247-255.	2.1	68
67	Evaluation of Staphylococcal Cell Surface Display and Flow Cytometry for Postselectional Characterization of Affinity Proteins in Combinatorial Protein Engineering Applications. Applied and Environmental Microbiology, 2007, 73, 6714-6721.	3.1	40
68	Cellular studies of binding, internalization and retention of a radiolabeled EGFR-binding affibody molecule. Nuclear Medicine and Biology, 2007, 34, 609-618.	0.6	72
69	Selection and characterization of Affibody ligands binding to Alzheimer amyloid \hat{l}^2 peptides. Journal of Biotechnology, 2007, 128, 162-183.	3.8	111
70	Affibodyâ€mediated transferrin depletion for proteomics applications. Biotechnology Journal, 2007, 2, 1389-1398.	3.5	42
71	Approaches for systematic proteome exploration. New Biotechnology, 2007, 24, 155-168.	2.7	24
72	Achieving directed immunostimulating complexes incorporation. Expert Review of Vaccines, 2006, 5, 395-403.	4.4	5

#	Article	IF	CITATIONS
73	Selection and characterization of an HIV-1 gp120-binding affibody ligand. Biotechnology and Applied Biochemistry, 2006, 45, 93.	3.1	26
74	Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 631-638.	6.4	64
75	Tumor Imaging Using a Picomolar Affinity HER2 Binding Affibody Molecule. Cancer Research, 2006, 66, 4339-4348.	0.9	462
76	Fine affinity discrimination by normalized fluorescence activated cell sorting in staphylococcal surface display. FEMS Microbiology Letters, 2005, 248, 189-198.	1.8	45
77	Applying biotin–streptavidin binding for iscom (immunostimulating complex) association of recombinant immunogens. Biotechnology and Applied Biochemistry, 2005, 41, 163.	3.1	9
78	In Vitro Characterization of a Bivalent Anti-HER-2 Affibody with Potential for Radionuclide-Based Diagnostics. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 239-248.	1.0	87
79	General strategies for efficient adjuvant incorporation of recombinant subunit immunogens. Vaccine, 2005, 23, 2331-2335.	3.8	15
80	Biotechnological applications for surface-engineered bacteria. Biotechnology and Applied Biochemistry, 2004, 40, 209.	3.1	90
81	An improved dual-expression concept, generating high-quality antibodies for proteomics research. Biotechnology and Applied Biochemistry, 2003, 38, 231.	3.1	9
82	Fluorescence-Activated Cell Sorting of Specific Affibody-Displaying Staphylococci. Applied and Environmental Microbiology, 2003, 69, 5328-5335.	3.1	17
83	Affinity Proteomics for Systematic Protein Profiling of Chromosome 21 Gene Products in Human Tissues. Molecular and Cellular Proteomics, 2003, 2, 405-414.	3.8	105
84	Engineering of staphylococcal surfaces for biotechnological applications. Journal of Biotechnology, 2002, 96, 67-78.	3.8	20
85	Display of proteins on bacteria. Journal of Biotechnology, 2002, 96, 129-154.	3.8	247
86	A novel affinity gene fusion system allowing protein A-based recovery of non-immunoglobulin gene products. Journal of Biotechnology, 2002, 99, 41-50.	3.8	40
87	Construction and characterization of affibody-Fc chimeras produced in Escherichia coli. Journal of Immunological Methods, 2002, 261, 199-211.	1.4	47
88	General expression vectors for Staphylococcus carnosusenabled efficient production of the outer membrane protein A of Klebsiella pneumoniae. FEMS Microbiology Letters, 2002, 210, 263-270.	1.8	16
89	Vector engineering to improve a staphylococcal surface display system. FEMS Microbiology Letters, 2002, 212, 47-54.	1.8	23
90	Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry, 2002, 35, 91.	3.1	103

#	Article	IF	CITATIONS
91	Mammalian cell production of a respiratory syncytial virus (RSV) candidate vaccine recovered using a product-specific affinity column. Biotechnology and Applied Biochemistry, 2001, 34, 25.	3.1	8
92	Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose-binding domain. FEMS Microbiology Letters, 2001, 195, 197-204.	1.8	27
93	In vivo and in vitro lipidation of recombinant immunogens for direct iscom incorporation. Journal of Immunological Methods, 2001, 255, 135-148.	1.4	11
94	Generation of Metal-Binding Staphylococci through Surface Display of Combinatorially Engineered Cellulose-Binding Domains. Applied and Environmental Microbiology, 2001, 67, 4678-4684.	3.1	50
95	Protection against respiratory syncytial virus (RSV) elicited in mice by plasmid DNA immunisation encoding a secreted RSV G protein-derived antigen. FEMS Immunology and Medical Microbiology, 2000, 29, 247-253.	2.7	28
96	Improved systems for hydrophobic tagging of recombinant immunogens for efficient iscom incorporation. Journal of Immunological Methods, 2000, 238, 181-193.	1.4	24
97	Design and production of recombinant subunit vaccines. Biotechnology and Applied Biochemistry, 2000, 32, 95.	3.1	131
98	Staphylococcal Surface Display of Metal-Binding Polyhistidyl Peptides. Applied and Environmental Microbiology, 2000, 66, 1243-1248.	3.1	121
99	Partial protection to respiratory syncytial virus (RSV) elicited in mice by intranasal immunization using live staphylococci with surface-displayed RSV-peptides. Vaccine, 2000, 18, 2743-2752.	3.8	47
100	Integrated bioprocess for production of human proinsulin C-peptide via heat release of an intracellular heptameric fusion protein. Journal of Biotechnology, 2000, 76, 215-226.	3.8	15
101	Protection against respiratory syncytial virus (RSV) elicited in mice by plasmid DNA immunisation encoding a secreted RSV G protein-derived antigen. FEMS Immunology and Medical Microbiology, 2000, 29, 247-253.	2.7	1
102	Engineering of aStaphylococcus carnosussurface display system by substitution or deletion of aStaphylococcus hyicuslipase propeptide. FEMS Microbiology Letters, 1999, 179, 131-139.	1.8	27
103	A surface-displayed cholera toxin B peptide improves antibody responses using food-grade staphylococci for mucosal subunit vaccine delivery. FEMS Immunology and Medical Microbiology, 1999, 25, 289-298.	2.7	26
104	General expression vectors for production of hydrophobically tagged immunogens for direct iscom incorporation. Journal of Immunological Methods, 1999, 222, 171-182.	1.4	14
105	Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. Journal of Biotechnology, 1999, 73, 1-33.	3.8	170
106	The serum albumin-binding region of streptococcal protein G (BB) potentiates the immunogenicity of the G130–230 RSV-A protein. Vaccine, 1999, 17, 406-414.	3.8	59
107	Surface display of functional fibronectin-binding domains on Staphylococcus carnosus. FEBS Letters, 1999, 446, 299-304.	2.8	22
108	An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology: an International Journal of Immunological Engineering, 1999, 4, 237-252.	2.4	80

#	Article	IF	CITATIONS
109	[28] Solid-phase differential display and bacterial expression systems in selection and functional analysis of cDNAs. Methods in Enzymology, 1999, 303, 495-511.	1.0	8
110	Engineering of a Staphylococcus carnosus surface display system by substitution or deletion of a Staphylococcus hyicus lipase propeptide. FEMS Microbiology Letters, 1999, 179, 131-139.	1.8	2
111	Staphylococcal Surface Display of Immunoglobulin A (IgA)- and IgE-Specific In Vitro-Selected Binding Proteins (Affibodies) Based on <i>Staphylococcus aureus</i> Protein A. Applied and Environmental Microbiology, 1999, 65, 4134-4140.	3.1	45
112	Differential induction of immunoglobulin G subclasses by immunization with DNA vectors containing or lacking a signal sequence. Immunology Letters, 1998, 61, 201-204.	2.5	57
113	Gene fragment polymerization gives increased yields of recombinant human proinsulin C-peptide. Gene, 1998, 210, 203-210.	2.2	13
114	Chromosomal sequencing using a PCR-based biotin-capture method allowed isolation of the complete gene for the outer membrane protein A of Klebsiella pneumoniae. Gene, 1998, 210, 93-101.	2.2	27
115	Affinity Fusion Strategies for Detection, Purification, and Immobilization of Recombinant Proteins. Protein Expression and Purification, $1997, 11, 1-16$.	1.3	302
116	Comparative study of DNA-based immunization vectors: effect of secretion signals on the antibody responses in mice. FEMS Immunology and Medical Microbiology, 1997, 18, 193-202.	2.7	43
117	Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nature Biotechnology, 1997, 15, 772-777.	17.5	573
118	The serum albumin-binding region of streptococcal protein G: a bacterial fusion partner with carrier-related properties. Journal of Immunological Methods, 1997, 201, 115-123.	1.4	61
119	Fusions to the cholera toxin B subunit: influence on pentamerization and GM1 binding. Journal of Immunological Methods, 1997, 210, 125-135.	1.4	55
120	Bacterial surface display: trends and progress. Trends in Biotechnology, 1997, 15, 185-192.	9.3	174
121	Induction of Protective Immunity in Rodents by Vaccination with a Prokaryotically Expressed Recombinant Fusion Protein Containing a Respiratory Syncytial Virus G Protein Fragment. Virology, 1997, 230, 155-166.	2.4	131
122	Integrated production of human insulin and its C-peptide. Journal of Biotechnology, 1996, 48, 241-250.	3.8	60
123	Surface display on staphylococci: a comparative study. FEBS Letters, 1996, 390, 327-333.	2.8	32
124	Upstream Strategies to Minimize Proteolytic Degradation upon Recombinant Production in Escherichia coli. Protein Expression and Purification, 1996, 7, 129-136.	1.3	91
125	A General Bacterial Expression System for Functional Analysis of cDNA-Encoded Proteins. Protein Expression and Purification, 1996, 7, 447-457.	1.3	36
126	A Novel Expression System for Salmonella typhimurium Allowing High Production Levels, Product Secretion and Efficient Recovery. Biochemical and Biophysical Research Communications, 1996, 218, 356-359.	2.1	10

#	Article	IF	CITATIONS
127	Multiple affinity domains for the detection, purification and immobilization of recombinant proteins. , 1996, 9, 585-594.		57
128	Surface display compared to periplasmic expression of a malarial antigen inSalmonella typhimuriumand its implications for immunogenicity. FEMS Immunology and Medical Microbiology, 1995, 12, 175-185.	2.7	42
129	Immunogens containing sequences from antigen Pf332 induce ⟨i⟩Plasmodium falciparum⟨ i⟩â€reactive antibodies which inhibit parasite growth but not cytoadherence. Parasite Immunology, 1995, 17, 341-352.	1.5	23
130	Hydrophobicity engineering to facilitate surface display of heterologous gene products on Staphylococcus xylosus. Journal of Biotechnology, 1995, 42, 207-219.	3.8	47
131	Hydrophobicity Engineering to Increase Solubility and Stability of a Recombinant Protein from Respiratory Syncytial Virus. FEBS Journal, 1995, 230, 38-44.	0.2	58
132	Single–Step Recovery of a Secreted Recombinant Protein by Expanded Bed Adsorption. Bio/technology, 1994, 12, 285-288.	1.5	129
133	Engineered bacterial receptors in immunology. Current Opinion in Immunology, 1993, 5, 272-277.	5.5	29
134	Cell-surface display of heterologous epitopes on Staphylococcus xylosus as a potential delivery system for oral vaccination. Gene, 1993, 128, 89-94.	2.2	80
135	Semi-automated solid-phase DNA sequencing. Trends in Biotechnology, 1992, 10, 52-55.	9.3	12
136	Solid phasein vitromutagenesis using plasmid DNA template. Nucleic Acids Research, 1990, 18, 5107-5112.	14.5	34
137	A general strategy for polymerization, assembly and expression of epitope-carrying peptides applied to the Plasmodium falciparum antigen Pf155/RESA. Gene, 1990, 89, 187-193.	2.2	31
138	A dual expression system for the generation, analysis and purification of antibodies to a repeated sequence of the Plasmodium falciparum antigen Pf155/RESA. Journal of Immunological Methods, 1989, 124, 43-52.	1.4	81
139	Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Research, 1989, 17, 4937-4946.	14.5	809
140	Solid phase DNA sequencing using the biotin-avidin system. Nucleic Acids Research, 1988, 16, 3025-3038.	14.5	66