Philippe G Vidon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1182890/publications.pdf

Version: 2024-02-01

56 papers ci

2,766 citations

331259 21 h-index 51 g-index

56 all docs 56
docs citations

56 times ranked 3696 citing authors

#	Article	IF	CITATIONS
1	Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 2009, 93, 49-77.	1.7	529
2	Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management ¹ . Journal of the American Water Resources Association, 2010, 46, 278-298.	1.0	398
3	The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams ¹ . Journal of the American Water Resources Association, 2010, 46, 261-277.	1.0	358
4	Land Use and Climate Variability Amplify Carbon, Nutrient, and Contaminant Pulses: A Review with Management Implications. Journal of the American Water Resources Association, 2014, 50, 585-614.	1.0	162
5	The impact of flooding on aquatic ecosystem services. Biogeochemistry, 2018, 141, 439-461.	1.7	142
6	Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. Biogeochemistry, 2008, 88, 257-270.	1.7	135
7	Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry, 2004, 71, 259-283.	1.7	115
8	Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers. Environmental Management, 2013, 51, 392-413.	1.2	64
9	Phosphorus dynamics in tile-drain flow during storms in the US Midwest. Agricultural Water Management, 2011, 98, 532-540.	2.4	62
10	Watershed  chemical cocktails': forming novel elemental combinations in Anthropocene fresh waters. Biogeochemistry, 2018, 141, 281-305.	1.7	62
11	Unrestricted cattle access to streams and water quality in till landscape of the Midwest. Agricultural Water Management, 2008, 95, 322-330.	2.4	61
12	A LANDSCAPE-BASED APPROACH TO ESTIMATE RIPARIAN HYDROLOGICAL AND NITRATE REMOVAL FUNCTIONS. Journal of the American Water Resources Association, 2006, 42, 1099-1112.	1.0	56
13	Twenty Years of Riparian Zone Research (1997–2017): Where to Next?. Journal of Environmental Quality, 2019, 48, 248-260.	1.0	52
14	Towards a better understanding of riparian zone water table response to precipitation: surface water infiltration, hillslope contribution or pressure wave processes?. Hydrological Processes, 2012, 26, 3207-3215.	1.1	51
15	Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events. Biogeochemistry, 2018, 141, 487-501.	1.7	38
16	Seasonal and geomorphic controls on N and P removal in riparian zones of the US Midwest. Biogeochemistry, 2014, 119, 245-257.	1.7	31
17	Long-term nitrate removal in a stream riparian zone. Biogeochemistry, 2014, 121, 425-439.	1.7	30
18	Hydrobiogeochemical Controls on Riparian Nutrient and Greenhouse Gas Dynamics: 10ÂYears Postâ€Restoration. Journal of the American Water Resources Association, 2014, 50, 639-652.	1.0	30

#	Article	IF	Citations
19	In the path of the Hurricane: impact of Hurricane Irene and Tropical Storm Lee on watershed hydrology and biogeochemistry from North Carolina to Maine, USA. Biogeochemistry, 2018, 141, 351-364.	1.7	26
20	Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry, 2005, 71, 259-283.	1.7	22
21	Denitrification along the Streamâ€Riparian Continuum in Restored and Unrestored Agricultural Streams. Journal of Environmental Quality, 2017, 46, 1010-1019.	1.0	22
22	Restoring stream ecosystem function with beaver dam analogues: Let's not make the same mistake twice. Hydrological Processes, 2019, 33, 174-177.	1.1	22
23	Isoproturon movement and dissipation in undisturbed soil cores from a grassed buffer strip. Agronomy for Sustainable Development, 2000, 20, 297-307.	0.8	22
24	Riparian zone management and environmental quality: a multiâ€contaminant challenge. Hydrological Processes, 2010, 24, 1532-1535.	1.1	21
25	Impact of Hurricane Irene and Tropical Storm Lee on riparian zone hydrology and biogeochemistry. Hydrological Processes, 2017, 31, 476-488.	1.1	19
26	Impact of seasonal changes in stream metabolism on nitrate concentrations in an urban stream. Biogeochemistry, 2017, 133, 317-331.	1.7	18
27	Estimating greenhouse gas emissions at the soil–atmosphere interface in forested watersheds of the US Northeast. Environmental Monitoring and Assessment, 2016, 188, 295.	1.3	14
28	Not all riparian zones are wetlands: Understanding the limitation of the "wetland bias―problem. Hydrological Processes, 2017, 31, 2125-2127.	1.1	14
29	Beaver dam analogues drive heterogeneous <scp>groundwater–surface</scp> water interactions. Hydrological Processes, 2020, 34, 5340-5353.	1.1	14
30	Field hydrologists needed: a call for young hydrologists to (re)â€focus on field studies. Hydrological Processes, 2015, 29, 5478-5480.	1.1	12
31	Phosphorus Transport along the Cropland–Riparian–Stream Continuum in Cold Climate Agroecosystems: A Review. Soil Systems, 2021, 5, 15.	1.0	12
32	Mercury dynamics in groundwater across three distinct riparian zone types of the US Midwest. Environmental Sciences: Processes and Impacts, 2013, 15, 2131.	1.7	10
33	Valuation of ecosystem services of commercial shrub willow (Salix spp.) woody biomass crops. Environmental Monitoring and Assessment, 2017, 189, 137.	1.3	10
34	Impact of Shrub Willow (Salix spp.) as a Potential Bioenergy Feedstock on Water Quality and Greenhouse Gas Emissions. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	10
35	Impact of sampling strategy on stream load estimates in till landscape of the Midwest. Environmental Monitoring and Assessment, 2009, 159, 367-379.	1.3	9
36	Impact of Stream Geomorphology on Greenhouse Gas Concentration in a New York Mountain Stream. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	9

#	Article	IF	Citations
37	Storm phosphorus concentrations and fluxes in artificially drained landscapes of the US Midwest. Agricultural Sciences, 2012, 03, 474-485.	0.2	9
38	Landscape geomorphic characteristic impacts on greenhouse gas fluxes in exposed stream and riparian sediments. Environmental Sciences: Processes and Impacts, 2016, 18, 844-853.	1.7	8
39	Changes in riparian hydrology and biogeochemistry following storm events at a restored agricultural stream. Environmental Sciences: Processes and Impacts, 2019, 21, 677-691.	1.7	8
40	Tree trade-offs in stream restoration: impacts on riparian groundwater quality. Urban Ecosystems, 2022, 25, 773-795.	1.1	8
41	Testing a Simple Field Method for Assessing Nitrate Removal in Riparian Zones ¹ . Journal of the American Water Resources Association, 2008, 44, 523-534.	1.0	7
42	Mercury proxies and mercury dynamics in a forested watershed of the US Northeast. Environmental Monitoring and Assessment, 2014, 186, 7475-7488.	1.3	7
43	Taking the pulse of stream restoration practices: moving towards healthier streams. Hydrological Processes, 2014, 28, 398-400.	1.1	7
44	RZ-TRADEOFF: A New Model to Estimate Riparian Water and Air Quality Functions. Water (Switzerland), 2019, 11, 769.	1.2	7
45	Stream and floodplain restoration impacts riparian zone hydrology of agricultural streams. Environmental Monitoring and Assessment, 2020, 192, 85.	1.3	7
46	Riparian seasonal water quality and greenhouse gas dynamics following stream restoration. Biogeochemistry, 2021, 156, 453-474.	1.7	6
47	Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast. Water (Switzerland), 2020, 12, 3525.	1.2	5
48	Evaluating the geomorphic channel response to beaver dam analog installation using unoccupied aerial vehicles. Earth Surface Processes and Landforms, 2021, 46, 2349-2364.	1.2	5
49	Impact of beaver dam analogues on hydrology in a <scp>semiâ€arid</scp> floodplain. Hydrological Processes, 2021, 35, e14275.	1.1	5
50	Interacting drivers and their tradeoffs for predicting denitrification potential across a strong urban to rural gradient within heterogeneous landscapes. Journal of Environmental Management, 2021, 294, 113021.	3.8	4
51	A new approach to generalizing riparian water and air quality function across regions. Environmental Monitoring and Assessment, 2019, 191, 282.	1.3	3
52	Shortâ€term impact of beaver dam analogues on streambank erosion and deposition in <scp>Semiâ€Arid</scp> landscapes of the Western <scp>USA</scp> . River Research and Applications, 2021, 37, 1032-1037.	0.7	3
53	Impact of Urbanization on Large Wood Sizes and Associated Recruitment Zones. Hydrology, 2020, 7, 89.	1.3	2
54	Featured Collection Introduction: Riparian Ecosystems and Buffers II. Journal of the American Water Resources Association, 2014, 50, 529-532.	1.0	1

#	Article	IF	CITATIONS
55	Impact of Riparian and Stream Restoration on Denitrification in Geomorphic Features of Agricultural Streams. Transactions of the ASABE, 2020, 63, 1157-1167.	1.1	1
56	Riparian Zone Nitrogen Management through the Development of the Riparian Ecosystem Management Model (REMM) in a Formerly Glaciated Watershed of the US Northeast. Agriculture (Switzerland), 2021, 11, 743.	1.4	1