Michal Arad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11827454/publications.pdf

Version: 2024-02-01

18	1,238	14	17
papers	citations	h-index	g-index
18	18	18	1993 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Progress in Neurobiology, 2012, 99, 1-14.	2.8	236
2	Mood Disorder Susceptibility Gene CACNA1C Modifies Mood-Related Behaviors in Mice and Interacts with Sex to Influence Behavior in Mice and Diagnosis in Humans. Biological Psychiatry, 2010, 68, 801-810.	0.7	157
3	Abnormal Trajectories of Neurodevelopment and Behavior Following In Utero Insult in the Rat. Biological Psychiatry, 2011, 70, 842-851.	0.7	138
4	Risperidone Administered During Asymptomatic Period of Adolescence Prevents the Emergence of Brain Structural Pathology and Behavioral Abnormalities in an Animal Model of Schizophrenia. Schizophrenia Bulletin, 2011, 37, 1257-1269.	2.3	131
5	Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behavioural Brain Research, 2009, 204, 369-386.	1.2	108
6	Tracing the development of psychosis and its prevention: What can be learned from animal models. Neuropharmacology, 2012, 62, 1273-1289.	2.0	100
7	Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology, 2009, 202, 385-396.	1.5	74
8	Pro-Cognitive and Antipsychotic Efficacy of the $\hat{l}\pm7$ Nicotinic Partial Agonist SSR180711 in Pharmacological and Neurodevelopmental Latent Inhibition Models of Schizophrenia. Neuropsychopharmacology, 2009, 34, 1753-1763.	2.8	55
9	AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology, 2011, 215, 149-163.	1.5	45
10	SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents. Pharmacology Biochemistry and Behavior, 2012, 102, 203-214.	1.3	39
11	Sex-Dependent Antipsychotic Capacity of 17β-Estradiol in the Latent Inhibition Model: A Typical Antipsychotic Drug in Both Sexes, Atypical Antipsychotic Drug in Males. Neuropsychopharmacology, 2010, 35, 2179-2192.	2.8	35
12	Contrasting Effects of Increased and Decreased Dopamine Transmission on Latent Inhibition in Ovariectomized Rats and Their Modulation by 17Î ² -Estradiol: An Animal Model of Menopausal Psychosis?. Neuropsychopharmacology, 2010, 35, 1570-1582.	2.8	30
13	Disruption of latent inhibition induced by ovariectomy can be reversed by estradiol and clozapine as well as by co-administration of haloperidol with estradiol but not by haloperidol alone. Psychopharmacology, 2009, 206, 731-740.	1.5	27
14	Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology. Brain, Behavior, and Immunity, 2017, 63, 35-49.	2.0	27
15	Fluctuation of latent inhibition along the estrous cycle in the rat: Modeling the cyclicity of symptoms in schizophrenic women?. Psychoneuroendocrinology, 2008, 33, 1401-1410.	1.3	15
16	Poly I-C Induces Early Embryo Loss in F344 Rats: a Potential Role for NK Cells. American Journal of Reproductive Immunology, 2005, 54, 49-53.	1.2	11
17	Abnormally rapid reversal learning and reduced response to antipsychotic drugs following ovariectomy in female rats. Psychoneuroendocrinology, 2012, 37, 200-212.	1.3	9
18	The pharmacology of latent inhibition and its relevance to schizophrenia., 0,, 276-318.		1