
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11825938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene-Specific Sex Effects on Susceptibility to Infectious Diseases. Frontiers in Immunology, 2021, 12, 712688.	4.8	11
2	Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse. Frontiers in Immunology, 2021, 12, 760881.	4.8	3
3	A New Polygenic Model for Nonfamilial Colorectal Cancer Inheritance Based on the Genetic Architecture of the Azoxymethane-Induced Mouse Model. Genetics, 2020, 214, 691-702.	2.9	5
4	Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence. Frontiers in Immunology, 2019, 10, 1083.	4.8	5
5	Persistence of Gamma-H2AX Foci in Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice. Radiation Research, 2018, 191, 67.	1.5	14
6	Genetic Regulation of Guanylate-Binding Proteins 2b and 5 during Leishmaniasis in Mice. Frontiers in Immunology, 2018, 9, 130.	4.8	15
7	Cross-Cancer Analysis Reveals Novel Pleiotropic Associations—Letter. Cancer Research, 2017, 77, 6042-6044.	0.9	2
8	Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biology of Sex Differences, 2016, 7, 59.	4.1	10
9	Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. Journal of Neuroinflammation, 2013, 10, 77.	7.2	74
10	Mapping the Genes for Susceptibility and Response to Leishmania tropica in Mouse. PLoS Neglected Tropical Diseases, 2013, 7, e2282.	3.0	15
11	Genetics of Host Response to Leishmania tropica in Mice – Different Control of Skin Pathology, Chemokine Reaction, and Invasion into Spleen and Liver. PLoS Neglected Tropical Diseases, 2012, 6, e1667.	3.0	27
12	Susceptibility loci affecting <i>ERBB2</i> / <i>neu</i> â€induced mammary tumorigenesis in mice. Genes Chromosomes and Cancer, 2012, 51, 631-643.	2.8	2
13	Linkage mapping of principal components for femoral biomechanical performance in a reciprocal HCB-8 × HCB-23 intercross. Bone, 2011, 48, 647-653.	2.9	16
14	Most Lung and Colon Cancer Susceptibility Genes Are Pair-Wise Linked in Mice, Humans and Rats. PLoS ONE, 2011, 6, e14727.	2.5	18
15	Susceptibility Loci and Chromosomal Abnormalities in Radiation Induced Hematopoietic Neoplasms in Mice. Journal of Radiation Research, 2011, 52, 147-158.	1.6	5
16	Comprehensive Skeletal Phenotyping and Linkage Mapping in an Intercross of Recombinant Congenic Mouse Strains HcB-8 and HcB-23. Cells Tissues Organs, 2011, 194, 244-248.	2.3	11
17	Genetic Control of Resistance to Trypanosoma brucei brucei Infection in Mice. PLoS Neglected Tropical Diseases, 2011, 5, e1173.	3.0	19
18	A locus on chromosome 8 controlling tumor regionality—a new type of tumor diversity in the mouse lung. International Journal of Cancer, 2010, 126, 2603-2613.	5.1	1

#	Article	IF	CITATIONS
19	Loci controlling lymphocyte production of interferon Î ³ after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunology, Immunotherapy, 2010, 59, 203-213.	4.2	10
20	Linkage mapping of femoral material properties in a reciprocal intercross of HcB-8 and HcB-23 recombinant mouse strains. Bone, 2010, 46, 1251-1259.	2.9	16
21	Quantitative trait loci for biomechanical performance and femoral geometry in an intercross of recombinant congenic mice: restriction of the <i>Bmd7</i> candidate interval. FASEB Journal, 2009, 23, 2142-2154.	0.5	26
22	Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection. Immunogenetics, 2009, 61, 619-633.	2.4	26
23	MicroRNA genes are frequently located near mouse cancer susceptibility loci. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8017-8022.	7.1	138
24	Genetic Study of Variation in Normal Mouse Iron Homeostasis Reveals Ceruloplasmin as an HFE-Hemochromatosis Modifier Gene. Gastroenterology, 2007, 132, 679-686.	1.3	26
25	Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection. BMC Microbiology, 2007, 7, 88.	3.3	5
26	THE GENETIC BASIS OF THE GENERATION OF EFFECTOR CAPACITY FOR CELL MEDIATED LYMPHOLYSIS IN MICE. International Journal of Immunogenetics, 2007, 1, 47-51.	1.8	15
27	Control of lymphocyte infiltration of lung tumors in mice by host's genes: mapping of four Lynf (lymphocyte infiltration) loci. Cancer Immunology, Immunotherapy, 2007, 57, 217-225.	4.2	6
28	Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nature Reviews Genetics, 2006, 7, 294-305.	16.3	134
29	The Genetic Factors in Cancer Development and their Implications for Cancer Prevention and Detection. Radiation Research, 2005, 164, 462-466.	1.5	10
30	Novel loci controlling lymphocyte proliferative response to cytokines and their clustering with loci controlling autoimmune reactions, macrophage function and lung tumor susceptibility. International Journal of Cancer, 2005, 114, 394-399.	5.1	12
31	LUNG TUMOR LOCATION AND LYMPHOCYTE INFILTRATION IN MICE ARE GENETICALLY DETERMINED. Experimental Lung Research, 2005, 31, 513-525.	1.2	5
32	Genetic Analysis of Macrophage Characteristics as a Tool to Identify Tumor Susceptibility Genes. Cancer Research, 2004, 64, 3458-3464.	0.9	18
33	LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12–21. Oncogene, 2003, 22, 3472-3474.	5.9	88
34	Five new mouse susceptibility to colon cancer loci, Scc11–Scc15. Oncogene, 2003, 22, 7258-7260.	5.9	24
35	Cancer susceptibility in the mouse: genetics, biology and implications for human cancer. Nature Reviews Genetics, 2003, 4, 721-734.	16.3	166
36	Spectroscopically Determined Collagen Pyr/deH-DHLNL Cross-Link Ratio and Crystallinity Indices Differ Markedly in Recombinant Congenic Mice with Divergent Calculated Bone Tissue Strength. Connective Tissue Research, 2003, 44, 134-142.	2.3	57

#	Article	IF	CITATIONS
37	Different Genetic Control of Cutaneous and Visceral Disease after Leishmania major Infection in Mice. Infection and Immunity, 2003, 71, 2041-2046.	2.2	35
38	Genetic analysis of three-dimensional shape of mouse lung tumors reveals eight lung tumor shape-determining (Ltsd) loci that are associated with tumor heterogeneity and symmetry. Cancer Research, 2003, 63, 125-31.	0.9	15
39	Genetic characterization of the Dyscalc locus. Mammalian Genome, 2002, 13, 283-288.	2.2	13
40	Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics, 2002, 54, 174-183.	2.4	28
41	Positional cloning of the combined hyperlipidemia gene Hyplip1. Nature Genetics, 2002, 30, 110-116.	21.4	195
42	Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nature Genetics, 2002, 31, 295-300.	21.4	239
43	THREE-DIMENSIONAL PATTERNS OF LUNG TUMOR GROWTH: ASSOCIATION WITH TUMOR HETEROGENEITY. Experimental Lung Research, 2001, 27, 521-531.	1.2	5
44	Defective spectrin integrity and neonatal thrombosis in the first mouse model for severe hereditary elliptocytosis. Blood, 2001, 97, 543-550.	1.4	21
45	Fine mapping of Hyplip1 and the human homolog, a potential locus for FCHL. Mammalian Genome, 2001, 12, 238-245.	2.2	17
46	Complexity of Lung Cancer Modifiers: Mapping of Thirty Genes and Twenty-five Interactions in Half of the Mouse Genome. Journal of the National Cancer Institute, 2001, 93, 1484-1491.	6.3	77
47	Modulations of glucocorticoid-induced apoptosis linked to the p53 deletion and to the apoptosis susceptibility gene Rapop1 (Radiation-induced apoptosis 1). Oncogene, 1999, 18, 4282-4285.	5.9	9
48	T-cell proliferative response is controlled by loci Tria4 and Tria5 on mouse Chromosomes 7 and 9. Mammalian Genome, 1999, 10, 670-674.	2.2	9
49	The production of two Th2 cytokines, interleukin-4 and interleukin-10, is controlled independently by locus Cypr1 and by loci Cypr2 and Cypr3 , respectively. Immunogenetics, 1999, 49, 134-141.	2.4	26
50	T-cell proliferative response is controlled by locus Tria3 on mouse chromosome 17. Immunogenetics, 1999, 49, 235-237.	2.4	4
51	Genetics of susceptibility to radiation-induced lymphomas, leukemias and lung tumors studied in recombinant congenic strains. , 1999, 83, 674-678.		24
52	Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nature Genetics, 1998, 18, 374-377.	21.4	98
53	Genetics of Quantitative and Qualitative Aspects of Lung Tumorigenesis in the Mouse: Multiple Interacting <i>Susceptibility to lung cancer (Sluc)</i> Genes with Large Effects. Experimental Lung Research, 1998, 24, 419-436.	1.2	21
54	IL-2-Induced Proliferative Response Is Controlled by LociCinda1andCinda2on Mouse Chromosomes 11 and 12: A Distinct Control of the Response Induced by Different IL-2 Concentrations. Genomics, 1997, 42, 11-15.	2.9	22

#	Article	IF	CITATIONS
55	Simulation of the distribution of parental strains' genomes in RC strains of mice. Mammalian Genome, 1997, 8, 884-889.	2.2	8
56	Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics, 1996, 44, 27-35.	2.4	13
57	Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics, 1996, 44, 475-477.	2.4	10
58	Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nature Genetics, 1996, 14, 465-467.	21.4	222
59	Gene interaction and single gene effects in colon tumour susceptibility in mice. Nature Genetics, 1996, 14, 468-470.	21.4	125
60	Identical genetic control of MLC reactivity to different MHC incompatibilities, independent of production of and response to IL-2. Immunogenetics, 1996, 44, 27-35.	2.4	4
61	Genetic control of T-cell proliferative response in mice linked to chromosomes 11 and 15. Immunogenetics, 1996, 44, 475-477.	2.4	0
62	Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics, 1995, 41, 301-311.	2.4	30
63	A susceptibility gene for alveolar lung tumors in the mouse maps between Hsp70.3 and G7 within the H2 complex. Immunogenetics, 1995, 41, 106-9.	2.4	29
64	Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes and mapping of Rapop1, a novel susceptibility gene. Genomics, 1995, 25, 609-614.	2.9	35
65	The recombinant congenic strains—a novel genetic tool applied to the study of colon tumor development in the mouse. Mammalian Genome, 1991, 1, 217-227.	2.2	67
66	B10.RIII(71NS)SnA congenic line apparently retains an RIII derived allele at Ly-6 locus. Immunogenetics, 1984, 20, 705-706.	2.4	3
67	Five serologically distinguishable Dq region molecules. Immunogenetics, 1984, 20, 211-216.	2.4	3
68	Murine complement factor B (BF) Sexual dimorphism and H-2-Linked polymorphism. Immunogenetics, 1982, 15, 23-30.	2.4	37
69	Private specificity of Hâ€2L ^{dx} molecule detected serologically by a surface antigen redistribution method (capping). Tissue Antigens, 1982, 20, 274-281.	1.0	1
70	Serological characterization of previously unknown H-2 molecules identified in the products of theK d andD k region. Immunogenetics, 1981, 12, 397-408.	2.4	20
71	Independence of H-2 and viral antigens on the cell surface and absence of H-2 antigens on murine leukemia virus and mouse mammary tumor virus particles. Immunogenetics, 1981, 14, 203-220.	2.4	7
72	Analysis of the expression of H-2 and H-2-linked antigens on mammary tumor cells. International Journal of Cancer, 1979, 24, 165-167.	5.1	5

#	Article	IF	CITATIONS
73	A new H-2.1-PositiveD region allele,D dx , controlling two molecules, H-2Ddx and H-2Ldx. Immunogenetics, 1979, 8, 109-125.	2.4	28
74	Complex genetic effect of B10.D2 (M504) (H-2dm1) mutation. Immunogenetics, 1979, 8, 539-550.	2.4	35
75	H–2L: Demonstration of Four New Allelic Products and Independence of H–2D and H–2L Molecules. Tissue Antigens, 1979, 14, 233-250.	1.0	22
76	Further evidence for two separate loci (H-2D andH-2L) in theD region of theH-2 complex. Immunogenetics, 1978, 6, 513-527.	2.4	25
77	TheH-2L locus and the system of H-2 specificities. Immunogenetics, 1978, 7, 295-311.	2.4	24
78	Topographical relationships among H-2 specificities controlled by theD region. Immunogenetics, 1977, 4, 349-364.	2.4	21
79	Relationships between private and public H-2 specificities on the cell surface. Immunogenetics, 1975, 2, 517-529.	2.4	63
80	H-2: Its Structure and Similarity to HL-A. Immunological Reviews, 1973, 15, 3-25.	6.0	11
81	H-2 Gene Complex and its Role in Alloimmune Reactions. Immunological Reviews, 1973, 15, 162-200.	6.0	12
82	HEMAGGLUTINATION AND CYTOTOXIC STUDIES OF H-2 II. SOME NEW CYTOTOXIC SPECIFICITIES. Transplantation, 1971, 11, 238-259.	1.0	27
83	HEMAGGLUTINATION AND CYTOTOXIC STUDIES OF H-2. Transplantation, 1971, 11, 210-237.	1.0	63