List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1182576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatio-temporal variation in sea state parameters along virtual ship route paths. Journal of Operational Oceanography, 2022, 15, 169-186.	1.2	5
2	Data-driven prediction of added-wave resistance on ships in oblique waves—A comparison between tree-based ensemble methods and artificial neural networks. Applied Ocean Research, 2022, 118, 102964.	4.1	15
3	Short-time FORM analysis for extreme roll motion prediction in beam seas. Marine Structures, 2022, 82, 103160.	3.8	5
4	Towards the uncertainty quantification of semi-empirical formulas applied to the added resistance of ships in waves of arbitrary heading. Ocean Engineering, 2022, 251, 111040.	4.3	7
5	Validation and correction of auto-logged position measurements. Communications in Transportation Research, 2022, 2, 100051.	10.7	7
6	Reconstruction of incident wave profiles based on short-time ship response measurements. Applied Ocean Research, 2022, 123, 103183.	4.1	9
7	Parameterised transfer functions with associated confidence bands. Applied Ocean Research, 2022, 125, 103250.	4.1	4
8	Real-time deterministic prediction of wave-induced ship responses based on short-time measurements. Ocean Engineering, 2021, 221, 108503.	4.3	14
9	Preliminary assessment of increased main engine load as a consequence of added wave resistance in the light of minimum propulsion power. Applied Ocean Research, 2021, 108, 102543.	4.1	11
10	How Good Is the STW Sensor? An Account from a Larger Shipping Company. Journal of Marine Science and Engineering, 2021, 9, 465.	2.6	6
11	Tuning of transfer functions for analysis of wave–ship interactions. Marine Structures, 2021, 79, 103029.	3.8	23
12	Prediction of ships' speed-power relationship at speed intervals below the design speed. Transportation Research, Part D: Transport and Environment, 2021, 99, 102996.	6.8	18
13	Wave conditions encountered by ships—A report from a larger shipping company based on ERA5. Ocean Engineering, 2021, 237, 109584.	4.3	8
14	Indirect Measurements of Added-Wave Resistance on an In-Service Container Ship. Lecture Notes in Civil Engineering, 2021, , 115-132.	0.4	1
15	Ocean wave spectrum estimation using measured vessel motions from an in-service container ship. Marine Structures, 2020, 69, 102682.	3.8	17
16	Estimation of autocorrelation function and spectrum density of wave-induced responses using prolate spheroidal wave functions. Journal of Marine Science and Technology, 2020, 26, 772.	2.9	7
17	Estimation of sea state parameters by the wave buoy analogy with comparisons to third generation spectral wave models. Ocean Engineering, 2020, 216, 107781.	4.3	19
18	Real-time detection of transverse stability changes in fishing vessels. Ocean Engineering, 2019, 189, 106369.	4.3	16

#	Article	IF	CITATIONS
19	Experimental Validation of Transverse Stability Monitoring System for Fishing Vessels. IFAC-PapersOnLine, 2019, 52, 57-63.	0.9	5
20	Sea state estimation using multiple ships simultaneously as sailing wave buoys. Applied Ocean Research, 2019, 83, 65-76.	4.1	39
21	A brute-force spectral approach for wave estimation using measured vessel motions. Marine Structures, 2018, 60, 101-121.	3.8	32
22	Response predictions using the observed autocorrelation function. Marine Structures, 2018, 58, 31-52.	3.8	18
23	Sea state estimation using vessel response in dynamic positioning. Applied Ocean Research, 2018, 70, 76-86.	4.1	46
24	Online wave estimation using vessel motion measurements. IFAC-PapersOnLine, 2018, 51, 244-249.	0.9	13
25	Ship Motion-Based Wave Estimation Using a Spectral Residual-Calculation. , 2018, , .		1
26	Deriving the absolute wave spectrum from an encountered distribution of wave energy spectral densities. Ocean Engineering, 2018, 165, 194-208.	4.3	11
27	A concise account of techniques available for shipboard sea state estimation. Ocean Engineering, 2017, 129, 352-362.	4.3	68
28	Statistical prediction of parametric roll using FORM. Ocean Engineering, 2017, 144, 235-242.	4.3	13
29	Transformation of a wave energy spectrum from encounter to absolute domain when observing from an advancing ship. Applied Ocean Research, 2017, 69, 160-172.	4.1	23
30	Intact Stability Analysis of Dead Ship Conditions using FORM. Journal of Ship Research, 2017, 61, 167-176.	1.1	11
31	Evaluation of shipboard wave estimation techniques through model-scale experiments. , 2016, , .		8
32	Estimation of wind sea and swell using shipboard measurements – A refined parametric modelling approach. Applied Ocean Research, 2016, 54, 73-86.	4.1	36
33	Sea state estimation using model-scale DP measurements. , 2015, , .		7
34	Uncertainties in ship-based estimation of waves and responses. , 2015, , .		1
35	Study on Short-term Variability of Ship Responses in Waves. The Journal of Japan Institute of Navigation, 2015, 132, 51-57.	0.1	4
36	New concepts for shipboard sea state estimation. , 2015, , .		6

36 New concepts for shipboard sea state estimation. , 2015, , .

#	Article	IF	CITATIONS
37	Trend modelling of wave parameters and application in onboard prediction of ship responses. , 2015, , .		О
38	Parametric Estimation in the Wave Buoy Analogy: An Elaborated Approach Based on Energy Considerations. , 2014, , .		1
39	Study on a Method for Estimating Fuel Consumption in a Seaway. , 2013, , .		1
40	A Study on Parametric Wave Estimation Based on Measured Ship Motions. The Journal of Japan Institute of Navigation, 2012, 126, 171-177.	0.1	5
41	Sea state estimation from an advancing ship – A comparative study using sea trial data. Applied Ocean Research, 2012, 34, 33-44.	4.1	50
42	Towards fault-tolerant decision support systems for ship operator guidance. Reliability Engineering and System Safety, 2012, 104, 1-14.	8.9	16
43	A novel approach for navigational guidance of ships using onboard monitoring systems. Ocean Engineering, 2011, 38, 444-455.	4.3	27
44	Onboard monitoring of fatigue damage rates in the hull girder. Marine Structures, 2011, 24, 182-206.	3.8	37
45	Fault Isolation for Shipboard Decision Support. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 413-418.	0.4	3
46	The Wave Buoy Analogy: Analysis of Synthetic Data by Bayesian Modelling. , 2010, , .		0
47	Calculation of mean outcrossing rates of non-Gaussian processes with stochastic input parameters — Reliability of containers stowed on ships in severe sea. Probabilistic Engineering Mechanics, 2010, 25, 206-217.	2.7	10
48	Estimation of Sea State Parameters From Measured Ship Responses: The Bayesian Approach With Fixed Hyperparameters. , 2010, , .		2
49	Fault Isolation and Quality Assessment for Shipboard Monitoring. , 2010, , .		3
50	Fault Detection for Shipboard Monitoring and Decision Support Systems. , 2009, , .		7
51	A step towards risk-based decision support for ships – Evaluation of limit states using parallel system analysis. Marine Structures, 2009, 22, 209-224.	3.8	12
52	Fault Detection for Shipboard Monitoring – Volterra Kernel and Hammerstein Model Approaches. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 24-29.	0.4	10
53	Numerical Simulations of the Rolling of a Ship in a Stochastic Sea: Evaluations by Use of MCS and FORM. , 2009, , .		3
54	Introducing two hyperparameters in Bayesian estimation of wave spectra. Probabilistic Engineering Mechanics, 2008, 23, 84-94.	2.7	44

#	Article	IF	CITATIONS
55	The wave buoy analogy — estimating high-frequency wave excitations. Applied Ocean Research, 2008, 30, 100-106.	4.1	23
56	Calculating Outcrossing Rates Used in Decision Support Systems for Ships. , 2008, , .		2
57	Response-based estimation of sea state parameters—influence of filtering. Ocean Engineering, 2007, 34, 1797-1810.	4.3	37
58	Estimations of on-site directional wave spectra from measured ship responses. Marine Structures, 2006, 19, 33-69.	3.8	118