Thomas Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11825144/publications.pdf

Version: 2024-02-01

117625 161849 3,312 83 34 54 h-index citations g-index papers 91 91 91 1608 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modeling of stiffness of FRP composites under elevated and high temperatures. Composites Science and Technology, 2008, 68, 3099-3106.	7.8	172
2	Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings. Structural Control and Health Monitoring, 2001, 3, 132-140.	0.7	136
3	A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications. Composite Structures, 2015, 127, 267-287.	5.8	121
4	Flexural behavior of a hybrid FRP and lightweight concrete sandwich bridge deck. Composites Part A: Applied Science and Manufacturing, 2007, 38, 879-889.	7.6	116
5	Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. International Journal of Fatigue, 2010, 32, 659-669.	5.7	114
6	Adhesively bonded lap joints from pultruded GFRP profiles. Part I: stress–strain analysis and failure modes. Composites Part B: Engineering, 2005, 36, 331-340.	12.0	108
7	Modeling of thermal responses for FRP composites under elevated and high temperatures. Composites Science and Technology, 2008, 68, 47-56.	7.8	105
8	Structural Concept, Design, and Experimental Verification of a Glass Fiber-Reinforced Polymer Sandwich Roof Structure. Journal of Composites for Construction, 2008, 12, 454-468.	3.2	96
9	GFRP-Balsa Sandwich Bridge Deck: Concept, Design, and Experimental Validation. Journal of Composites for Construction, 2014, 18, .	3.2	87
10	Long-Term Performance of a Glass Fiber-Reinforced Polymer Truss Bridge. Journal of Composites for Construction, 2007, 11, 99-108.	3.2	84
11	Fatigue of Fiber-reinforced Composites. Engineering Materials and Processes, 2011, , .	0.4	84
12	Fire protection systems for building floors made of pultruded GFRP profiles. Composites Part B: Engineering, 2010, 41, 617-629.	12.0	81
13	Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints. Composite Structures, 2010, 92, 1631-1639.	5.8	73
14	Adhesively bonded lap joints from pultruded GFRP profiles. Part II: joint strength prediction. Composites Part B: Engineering, 2005, 36, 341-350.	12.0	69
15	Plate bending behavior of a pultruded GFRP bridge deck system. Composite Structures, 2004, 64, 285-295.	5.8	65
16	Composite Action and Adhesive Bond between Fiber-Reinforced Polymer Bridge Decks and Main Girders. Journal of Composites for Construction, 2005, 9, 360-368.	3.2	65
17	Experimental investigations on temperature-dependent thermo-physical and mechanical properties of pultruded GFRP composites. Thermochimica Acta, 2008, 469, 28-35.	2.7	65
18	Modeling of Strength Degradation for Fiber-reinforced Polymer Composites in Fire. Journal of Composite Materials, 2009, 43, 2371-2385.	2.4	64

#	Article	IF	CITATIONS
19	Effects of elevated temperature on the shear response of PET and PUR foams used in composite sandwich panels. Construction and Building Materials, 2015, 76, 150-157.	7.2	63
20	Ductile double-lap joints from brittle GFRP laminates and ductile adhesives, Part I: Experimental investigation. Composites Part B: Engineering, 2008, 39, 271-281.	12.0	59
21	Fire endurance of loaded and liquid-cooled GFRP slabs for construction. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1055-1067.	7.6	54
22	System ductility and redundancy of FRP beam structures with ductile adhesive joints. Composites Part B: Engineering, 2005, 36, 586-596.	12.0	47
23	Modeling of mechanical response of FRP composites in fire. Composites Part A: Applied Science and Manufacturing, 2009, 40, 731-738.	7.6	47
24	Fire protection systems for building floors made of pultruded GFRP profiles – Part 2: Modeling of thermomechanical responses. Composites Part B: Engineering, 2010, 41, 630-636.	12.0	44
25	Experimental investigation of R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1689-1697.	7.6	44
26	Tensile fatigue performance of pultruded glass fiber reinforced polymer profiles. Composite Structures, 2005, 68, 235-245.	5.8	43
27	Mode I and II fracture behavior of adhesively-bonded pultruded composite joints. Engineering Fracture Mechanics, 2010, 77, 128-143.	4.3	43
28	Fatigue behavior of adhesively connected pultruded GFRP profiles. Composite Structures, 2004, 65, 55-64.	5.8	39
29	Modeling of post-fire stiffness of E-glass fiber-reinforced polyester composites. Composites Part A: Applied Science and Manufacturing, 2007, 38, 2142-2153.	7.6	39
30	Experimental investigation of the fatigue behavior of adhesively-bonded pultruded GFRP joints under different load ratios. International Journal of Fatigue, 2011, 33, 1451-1460.	5.7	38
31	Effects of thermal loading history on structural adhesive modulus across glass transition. Construction and Building Materials, 2011, 25, 2162-2168.	7.2	37
32	Creep effects on tension-tension fatigue behavior of angle-ply GFRP composite laminates. International Journal of Fatigue, 2019, 123, 144-156.	5.7	37
33	Towards Structural Forms for Composite Fibre Materials. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 1999, 9, 297-300.	0.8	35
34	Structural response of liquid-cooled GFRP slabs subjected to fire – Part I: Material and post-fire modeling. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1286-1295.	7.6	35
35	Structural response of liquid-cooled GFRP slabs subjected to fire – Part II: Thermo-chemical and thermo-mechanical modeling. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1296-1308.	7.6	35
36	In-plane compression and shear performance of FRP bridge decks acting as top chord of bridge girders. Composite Structures, 2006, 72, 151-162.	5.8	34

#	Article	IF	CITATIONS
37	Experimental investigation and modeling of mean load effect on fatigue behavior of adhesively-bonded pultruded GFRP joints. International Journal of Fatigue, 2012, 44, 245-252.	5.7	34
38	Effect of service temperature on the shear creep response of rigid polyurethane foam used in composite sandwich floor panels. Construction and Building Materials, 2016, 118, 235-244.	7.2	34
39	Adhesively bonded connections between composite sandwich floor panels for building rehabilitation. Composite Structures, 2015, 134, 255-268.	5.8	33
40	Temperature effect on fatigue behavior of basalt fiberâ€reinforced polymer composites. Polymer Composites, 2019, 40, 2273-2283.	4.6	32
41	Time Dependence of Material Properties of FRP Composites in Fire. Journal of Composite Materials, 2009, 43, 2469-2484.	2.4	31
42	Fire Performance of Water-Cooled GFRP Columns. I: Fire Endurance Investigation. Journal of Composites for Construction, 2011, 15, 404-412.	3.2	31
43	Effect of thermal lag on glass transition temperature of polymers measured by DMA. International Journal of Adhesion and Adhesives, 2014, 52, 31-39.	2.9	31
44	A total fatigue life model for the prediction of the R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1783-1790.	7.6	30
45	Effect of Natural Weathering on Durability of Pultruded Glass Fiber–Reinforced Bridge and Building Structures. Journal of Composites for Construction, 2016, 20, .	3.2	29
46	Creep behaviour of sandwich panels with rigid polyurethane foam core and glass-fibre reinforced polymer faces: Experimental tests and analytical modelling. Journal of Composite Materials, 2014, 48, 2237-2249.	2.4	27
47	Effect of stress ratios on tension–tension fatigue behavior and micro-damage evolution of basalt fiber-reinforced epoxy polymer composites. Journal of Materials Science, 2018, 53, 9545-9556.	3.7	27
48	Design of robust and ductile FRP structures incorporating ductile adhesive joints. Composites Part B: Engineering, 2010, 41, 148-156.	12.0	26
49	Thermomechanical Behavior of Multifunctional GFRP Sandwich Structures with Encapsulated Photovoltaic Cells. Journal of Composites for Construction, 2010, 14, 470-478.	3.2	24
50	Structural limits of FRP-balsa sandwich decks in bridge construction. Composites Part B: Engineering, 2014, 63, 77-84.	12.0	24
51	Adhesively Bonded and Translucent Glass Fiber Reinforced Polymer Sandwich Girders. Journal of Composites for Construction, 2004, 8, 461-470.	3.2	23
52	Delamination and kink-band failure of pultruded GFRP laminates under elevated temperatures and compression. Composite Structures, 2011, 93, 843-849.	5.8	23
53	Stress ratio effect on tension-tension fatigue behavior of angle-ply GFRP laminates. International Journal of Fatigue, 2019, 126, 103-111.	5.7	23
54	Experimental study on the concept of liquid cooling for improving fire resistance of FRP structures for construction. Composites Part A: Applied Science and Manufacturing, 2005, 36, 1569-1580.	7.6	22

#	Article	IF	Citations
55	A computational tool for the life prediction of GFRP laminates under irregular complex stress states: Influence of the fatigue failure criterion. Computational Materials Science, 2010, 49, 483-491.	3.0	22
56	FRP-Balsa Composite Sandwich Bridge Deck with Complex Core Assembly. Journal of Composites for Construction, 2013, 17 , .	3.2	21
57	Energy dissipation and recovery in web–flange junctions of pultruded GFRP decks. Composite Structures, 2016, 148, 168-180.	5.8	21
58	Variable amplitude fatigue of adhesively-bonded pultruded GFRP joints. International Journal of Fatigue, 2013, 55, 22-32.	5.7	20
59	Tension-tension fatigue behavior of ductile adhesively-bonded FRP joints. Composite Structures, 2021, 268, 113925.	5.8	20
60	Pultruded GFRP tubes with liquid-cooling system under combined temperature and compressive loading. Composite Structures, 2009, 90, 115-121.	5.8	18
61	Fire Performance of Water-Cooled GFRP Columns. II: Postfire Investigation. Journal of Composites for Construction, 2011, 15, 413-421.	3.2	15
62	Mixed-mode fatigue failure criteria for adhesively-bonded pultruded GFRP joints. Composites Part A: Applied Science and Manufacturing, 2013, 54, 46-55.	7.6	15
63	Optimization of multi-directional fiber architecture for resistance and ductility of bolted FRP profile joints. Composite Structures, 2020, 248, 112535.	5.8	15
64	A novel fatigue life prediction methodology based on energy dissipation in viscoelastic materials. International Journal of Fatigue, 2021, 152, 106457.	5.7	15
65	Total light transmittance of glass fiber-reinforced polymer laminates for multifunctional load-bearing structures. Journal of Composite Materials, 2014, 48, 3591-3604.	2.4	13
66	Effect of service temperature on the flexural creep of vacuum infused GFRP laminates used in sandwich floor panels. Composites Part B: Engineering, 2016, 90, 160-171.	12.0	13
67	Connection systems between composite sandwich floor panels and load-bearing walls for building rehabilitation. Engineering Structures, 2016, 106, 209-221.	5.3	13
68	Creep of Sandwich Panels with Longitudinal Reinforcement Ribs for Civil Engineering Applications: Experiments and Composite Creep Modeling. Journal of Composites for Construction, 2017, 21, .	3.2	13
69	Structural Performance of FRP Composites in Fire. Advances in Structural Engineering, 2010, 13, 793-804.	2.4	12
70	Post-wrinkling behavior of webs in GFRP cell-core sandwich structures. Composite Structures, 2016, 138, 276-284.	5.8	12
71	Long-term design of FRP-PUR web-core sandwich structures in building construction. Composite Structures, 2017, 181, 214-228.	5.8	12
72	Two-dimensional fatigue debonding in GFRP/balsa sandwich panels. International Journal of Fatigue, 2019, 125, 72-84.	5.7	11

#	Article	IF	CITATIONS
73	Contribution to Shear Wrinkling of GFRP Webs in Cell-Core Sandwiches. Journal of Composites for Construction, 2011, 15, 833-840.	3.2	9
74	Instability of thin-walled GFRP webs in cell-core sandwiches under combined bending and shear loads. Thin-Walled Structures, 2012, 53, 200-210.	5.3	8
75	Resistance and ductility of FRP composite hybrid joints. Composite Structures, 2021, 255, 113001.	5.8	7
76	Thermophysical and thermomechanical properties of basalt-phenolic FRP rebars under high temperature. Construction and Building Materials, 2022, 342, 127983.	7.2	5
77	Modeling the Fatigue Behavior of Fiber-Reinforced Composite Materials Under Constant Amplitude Loading. Engineering Materials and Processes, 2011, , 87-139.	0.4	4
78	Two-dimensional quasi-static debonding in GFRP/balsa sandwich panels. Composite Structures, 2019, 215, 391-401.	5.8	3
79	Thermal and mechanical performances of GFRP sandwich structures with integrated amorphous silicon photovoltaic cells. Composite Structures, 2022, 290, 115524.	5.8	3
80	Fiber-polymer composites for permanent large-scale bending-active elastica beams. Composite Structures, 2022, 294, 115809.	5.8	3
81	Optically-derived mechanical properties of glass fiber-reinforced polymer laminates for multifunctional load-bearing structures. Journal of Composite Materials, 2015, 49, 3539-3556.	2.4	2
82	FATIGUE BEHAVIOR OF DOUBLE-LAP JOINTS FROM PULTRUDED GFRP LAMINATES. , 2004, , 641-648.		0
83	Fire Performance of Water-Cooled Cellular GFRP Columns. , 2011, , 405-409.		0