
K M Abraham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Polymer Electrolyteâ€Based Rechargeable Lithium/Oxygen Battery. Journal of the Electrochemical Society, 1996, 143, 1-5.	1.3	1,968
2	Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithiumâ	1.5	894
3	Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications. Journal of Physical Chemistry C, 2009, 113, 20127-20134.	1.5	616
4	A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. Journal of the Electrochemical Society, 1979, 126, 523-527.	1.3	548
5	Li+â€Conductive Solid Polymer Electrolytes with Liquidâ€Like Conductivity. Journal of the Electrochemical Society, 1990, 137, 1657-1658.	1.3	438
6	Highly Conductive PEO-like Polymer Electrolytes. Chemistry of Materials, 1997, 9, 1978-1988.	3.2	419
7	Rechargeable Lithium/TEGDME-LiPF[sub 6]â^•O[sub 2] Battery. Journal of the Electrochemical Society, 2011, 158, A302.	1.3	403
8	How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?. ACS Energy Letters, 2020, 5, 3544-3547.	8.8	325
9	Lithium-air and lithium-sulfur batteries. MRS Bulletin, 2011, 36, 506-512.	1.7	272
10	Prospects and Limits of Energy Storage in Batteries. Journal of Physical Chemistry Letters, 2015, 6, 830-844.	2.1	270
11	Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-Based Electrolyte. Journal of the Electrochemical Society, 2013, 160, A259-A267.	1.3	248
12	A Solid-State, Rechargeable, Long Cycle Life Lithium–Air Battery. Journal of the Electrochemical Society, 2010, 157, A50.	1.3	239
13	Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts. Journal of the American Chemical Society, 2019, 141, 3232-3239.	6.6	220
14	Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries. Journal of Physical Chemistry C, 2012, 116, 20755-20764.	1.5	193
15	Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A290-A301.	1.3	177
16	Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery. Journal of Physical Chemistry Letters, 2011, 2, 2420-2424.	2.1	147
17	Suppression of Toxic Compounds Produced in the Decomposition of Lithium-Ion Battery Electrolytes. Electrochemical and Solid-State Letters, 2004, 7, A194.	2.2	142
18	Characterization of Some Polyacrylonitrile-Based Electrolytes. Chemistry of Materials, 1997, 9, 369-379	3.2	141

K M Abraham

#	Article	IF	CITATIONS
19	Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries. Journal of the Electrochemical Society, 2015, 162, A3021-A3031.	1.3	126
20	The Electrochemical Intercalation of Li into Graphite in Li/Polymer Electrolyte/Graphite Cells. Journal of the Electrochemical Society, 1995, 142, 333-340.	1.3	113
21	Rechargeable Lithium/Vanadium Oxide Cells Utilizing 2Me â€â€‰â€‰THF  / LiAsF6. Journal Society, 1981, 128, 2493-2501.	of the Elec	ctrochemical 107
22	Additives for Stabilizing LiPF[sub 6]-Based Electrolytes Against Thermal Decomposition. Journal of the Electrochemical Society, 2005, 152, A1361.	1.3	103
23	nâ€Butylferrocene for Overcharge Protection of Secondary Lithium Batteries. Journal of the Electrochemical Society, 1990, 137, 1856-1857.	1.3	93
24	A Study of the Influence of Lithium Salt Anions on Oxygen Reduction Reactions in Li-Air Batteries. Journal of the Electrochemical Society, 2015, 162, A1055-A1066.	1.3	93
25	Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media. Journal of Physical Chemistry Letters, 2017, 8, 2881-2886.	2.1	89
26	Preparation and Electrochemical Characterization of Micronâ€ s ized Spinel LiMn2 O 4. Journal of the Electrochemical Society, 1996, 143, 1591-1598.	1.3	86
27	The Lithium Surface Film in the Li /  SO 2 Cell. Journal of the Electrochemical Society, 1986, 1	33, 1.3 07-	13184
28	Characterization of Ether Electrolytes for Rechargeable Lithium Cells. Journal of the Electrochemical Society, 1982, 129, 2404-2409.	1.3	83
29	A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries. Journal of the Electrochemical Society, 2014, 161, A355-A363.	1.3	81
30	Formation and Growth of Surface Films on Graphitic Anode Materials for Li-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A128.	2.2	73
31	Preparation and Characterization of Some Lithium Insertion Anodes for Secondary Lithium Batteries. Journal of the Electrochemical Society, 1990, 137, 743-749.	1.3	72
32	Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries. Chemistry of Materials, 1991, 3, 339-348.	3.2	61
33	Discharge Rate Capability of the LiCoO2 Electrode. Journal of the Electrochemical Society, 1998, 145, 482-486.	1.3	60
34	Polyphosphazeneâ€Poly(Olefin Oxide) Mixed Polymer Electrolytes: I . Conductivity and Thermal Studies of. Journal of the Electrochemical Society, 1989, 136, 3576-3582.	1.3	59
35	Synthesis, Structure and Electrochemistry of Lithium Vanadium Phosphate Cathode Materials. Journal of the Electrochemical Society, 2011, 158, A1250.	1.3	59
36	A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Advances, 2015, 5, 27375-27386.	1.7	58

K M Abraham

#	Article	IF	CITATIONS
37	Mixed Ether Electrolytes for Secondary Lithium Batteries with Improved Low Temperature Performance. Journal of the Electrochemical Society, 1986, 133, 661-666.	1.3	57
38	Rechargeable Solid‣tate Li Batteries Utilizing Polyphosphazeneâ€Poly(Ethylene Oxide) Mixed Polymer Electrolytes. Journal of the Electrochemical Society, 1988, 135, 535-536.	1.3	56
39	A Brief History of Non-Aqueous Metal-Air Batteries. ECS Transactions, 2008, 3, 67-71.	0.3	53
40	Characterization of Reactions and Products of the Discharge and Forced Overdischarge of Li /  SOâ Cells. Journal of the Electrochemical Society, 1982, 129, 1857-1861.	€‰2 1.3	51
41	Some Chemistry in the Li / SOCl2 Cell. Journal of the Electrochemical Society, 1980, 127, 2091-2096.	1.3	47
42	The Li4Ti5 O 12/PAN Electrolyte// LiMn2 O 4 Rechargeable Battery with Passivationâ€Free Elec Journal of the Electrochemical Society, 1998, 145, 2615-2622.	trodes. 1.3	47
43	Cobalt Phthalocyanine Catalyzed Lithium-Air Batteries. Journal of the Electrochemical Society, 2013, 160, A1577-A1586.	1.3	46
44	Microelectrode Diagnostics of Lithium-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A381-A392.	1.3	46
45	A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1236-A1245.	1.3	39
46	Comment on "Cycling Li-O ₂ batteries via LiOH formation and decomposition― Science, 2016, 352, 667-667.	6.0	38
47	Solvent-Coupled Catalysis of the Oxygen Electrode Reactions in Lithium-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A1706-A1715.	1.3	37
48	Synthesis of heteropolymetallic silanes. Inorganic Chemistry, 1973, 12, 2850-2856.	1.9	35
49	Electronic Effects of Substituents on Redox Shuttles for Overcharge Protection of Li-ion Batteries. Journal of the Electrochemical Society, 2012, 159, A1057-A1064.	1.3	35
50	Highly conductive polymer electrolytes. , 1993, , 75-112.		35
51	The Role of Carbonate Solvents on Lithium Intercalation into Graphite. Journal of the Electrochemical Society, 2007, 154, A185.	1.3	33
52	Moderate Temperature Sodium Cells: I . Transition Metal Disulfide Cathodes. Journal of the Electrochemical Society, 1980, 127, 2545-2550.	1.3	24
53	A Layered Carbon Nanotube Architecture for High Power Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A989-A995.	1.3	19
		2	

Rechargeability of the Ambient Temperature Cell Li/2Meâ€THF, LiAsF6 / Cr0.5 V 0.5 S 2. Journal of the Electrochemical Society, 1983, 130, 2309-2314.

#	Article	IF	CITATIONS
55	Solid Phase FePC Catalysts for Increased Stability of Oxygen Reduction Reaction Intermediates at the Cathode/Electrolyte Interface in Lithium Air Batteries. Journal of the Electrochemical Society, 2017, 164, A760-A769.	1.3	15
56	Li / MoSe3 S  Secondary Battery. Journal of the Electrochemical Society, 1987, 134, 2661-2665.	1.3	14
57	Moderate Temperature Sodium Cells: V . Discharge Reactions and Rechargeability of and Positive Electrodes in Molten. Journal of the Electrochemical Society, 1984, 131, 2211-2217.	1.3	13
58	Economic analysis of CNT lithium-ion battery manufacturing. Environmental Science: Nano, 2015, 2, 463-476.	2.2	12
59	Rechargeable Batteries for the 300-Mile Electric Vehicle and Beyond. ECS Transactions, 2012, 41, 27-34.	0.3	11
60	Moderate Temperature Na Cells: III . Electrochemical and Structural Studies of and Its Na Intercalates. Journal of the Electrochemical Society, 1981, 128, 2574-2577.	1.3	9
61	Moderate Temperature Na Cells: II . Transition Metal Diselenide Cathodes. Journal of the Electrochemical Society, 1981, 128, 1060-1062.	1.3	9
62	Synthesis, characterization, and lithium battery applications of molybdenum oxysulfides. Chemistry of Materials, 1993, 5, 1233-1241.	3.2	8
63	In Situ Formed Layered-Layered Metal Oxide as Bifunctional Catalyst for Li-Air Batteries. Journal of the Electrochemical Society, 2016, 163, A2464-A2474.	1.3	8
64	Effect of silver coating on electrochemical performance of 0.5Li2MnO3.0.5 LiMn1/3Ni1/3Co1/3O2 cathode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1593-1604.	1.2	8
65	Reactions at the Anode during Storage of Partially Discharged Li /  SO 2 Cells. Journal of the Electrochemical Society, 1983, 130, 1618-1620.	1.3	7
66	Some Chemistry in the Li /  ″ SOCl2 + BrCl ″  Cell. Journal of the Electrocl	nemical Sc	o z iety, 1988
67	Moderate Temperature Na Cells: IV . and as Rechargeable Cathodes in Molten. Journal of the Electrochemical Society, 1981, 128, 2700-2702.	1.3	6
68	Characterization of Li /  SO 2Cl2 and Li /  "  SO 2Cl2 + C 135, 2917-2922.]2ậ€‰â€ 1.3	ꀉ Cells.
69	Correlating Ionic Conductivity, Oxygen Transport and ORR with Structure of Dialkylacetamide-Based Electrolytes for Lithium-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A305-A317.	1.3	5
70	Li2-xFe0.5(VO)0.5(PO4)F0.5, a New Mixed Metal Phosphate Cathode Material. Journal of the Electrochemical Society, 2012, 159, A1659-A1663.	1.3	3
71	High Power Lithium Ion Battery Facilitated by an Advanced Cathode. , 2008, , .		1

72 Polymer electrolyte-based Li ion batteries for space power. , 1997, , .

0

K M Abraham

#	Article	IF	CITATIONS
73	Preparation and Battery Applications of Micron Sized Li4Ti5O2. Materials Research Society Symposia Proceedings, 1997, 496, 359.	0.1	Ο
74	Lithium Organic Liquid Electrolyte Batteries. , 1985, , 337-349.		0
75	Non-Electrical Techniques of Cell Characterization. , 1985, , 283-296.		0