
Yi-Je Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systemic bone loss following myocardial infarction in mice. Journal of Orthopaedic Research, 2021, 39, 739-749.	2.3	4
2	Mechanical Load Regulates Excitation-Ca ²⁺ Signaling-Contraction in Cardiomyocyte. Circulation Research, 2021, 128, 772-774.	4.5	9
3	Secondhand Smoke Decreased Excitability and Altered Action Potential Characteristics of Cardiac Vagal Neurons in Mice. Frontiers in Physiology, 2021, 12, 727000.	2.8	3
4	The potassium channel Kv1.3 as a therapeutic target forÂimmunocytoprotection after reperfusion. Annals of Clinical and Translational Neurology, 2021, 8, 2070-2082.	3.7	9
5	Biophysical basis for Kv1.3 regulation of membrane potential changes induced by <scp>P2X4</scp> â€mediated calcium entry in microglia. Glia, 2020, 68, 2377-2394.	4.9	43
6	Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Archives of Toxicology, 2020, 94, 1995-2007.	4.2	10
7	Exacerbated brain edema in a rat streptozotocin model of hyperglycemic ischemic stroke: Evidence for involvement of blood–brain barrier Na–K–Cl cotransport and Na/H exchange. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1678-1692.	4.3	20
8	Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. Annals of Clinical and Translational Neurology, 2018, 5, 147-161.	3.7	39
9	Blood-Brain Barrier Mechanisms of Edema Formation. , 2017, , 129-149.		1
10	In Vivo Cannulation Methods for Cardiomyocytes Isolation from Heart Disease Models. PLoS ONE, 2016, 11, e0160605.	2.5	10
11	Multimodal second harmonic generation and two photon fluorescence imaging of microdomain calcium contraction coupling in single cardiomyocytes. , 2016, , .		0
12	Multimodal SHG-2PF Imaging of Microdomain Ca ²⁺ -Contraction Coupling in Live Cardiac Myocytes. Circulation Research, 2016, 118, e19-28.	4.5	19
13	The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2146-2161.	4.3	84
14	Blood–Brain Barrier KCa3.1 Channels. Stroke, 2015, 46, 237-244.	2.0	57
15	Mechanochemotransduction During Cardiomyocyte Contraction Is Mediated by Localized Nitric Oxide Signaling. Science Signaling, 2014, 7, ra27.	3.6	128
16	Kv1.3 in psoriatic disease: PAP-1, a small molecule inhibitor of Kv1.3 is effective in the SCID mouse psoriasis – Xenograft model. Journal of Autoimmunity, 2014, 55, 63-72.	6.5	58
17	Intravenous HOE-642 Reduces Brain Edema and Na Uptake in the Rat Permanent Middle Cerebral Artery Occlusion Model of Stroke: Evidence for Participation of the Blood–Brain Barrier Na/H Exchanger. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 225-234.	4.3	62
18	The Potassium Channel KCa3.1 as New Therapeutic Target for the Prevention of Obliterative Airway Disease. Transplantation, 2013, 95, 285-292.	1.0	19

YI-JE CHEN

#	Article	IF	CITATIONS
19	The Ca2+-Activated K+ Channel KCa3.1 as a Potential New Target for the Prevention of Allograft Vasculopathy. PLoS ONE, 2013, 8, e81006.	2.5	18
20	The Kv1.3 Blocker PAPâ€1 Reduces Infarction and Neurological Deficit in a Rat Model of Reperfusion Stroke. FASEB Journal, 2013, 27, .	0.5	1
21	Blood brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema during ischemic stroke. FASEB Journal, 2012, 26, 695.13.	0.5	0
22	Bloodâ€Brain Barrier Na/HCO3 Cotransporters: Evidence for a Role in Ischemiaâ€induced Brain Na Uptake. FASEB Journal, 2012, 26, 1152.22.	0.5	0
23	The KCa3.1 Blocker TRAM-34 Reduces Infarction and Neurological Deficit in a Rat Model of Ischemia/Reperfusion Stroke. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2363-2374.	4.3	92
24	Bumetanide and HOE642 administered after initiation of rat middle cerebral artery occlusion effectively reduce rat brain Na uptake and infarct. FASEB Journal, 2009, 23, 614.6.	0.5	0
25	In vitro evaluation of the effect of a novel immunosuppressive agent, FTY720, on the function of feline neutrophils. American Journal of Veterinary Research, 2006, 67, 588-592.	0.6	6