
Nicole Robbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterialâ€fungal interactions and their impact on microbial pathogenesis. Molecular Ecology, 2023, 32, 2565-2581.	3.9	13
2	Genetic analysis of Hsp90 function in <i>Cryptococcus neoformans</i> highlights key roles in stress tolerance and virulence. Genetics, 2022, 220, .	2.9	12
3	Interactions Between Intracellular Fungal Pathogens and Host Phagocytes. , 2022, , .		0
4	The role of Candida albicans stress response pathways in antifungal tolerance and resistance. IScience, 2022, 25, 103953.	4.1	29
5	High-Throughput Chemical Screen Identifies a 2,5-Disubstituted Pyridine as an Inhibitor of Candida albicans Erg11. MSphere, 2022, 7, e0007522.	2.9	3
6	Genomic Approaches to Antifungal Drug Target Identification and Validation. Annual Review of Microbiology, 2022, 76, .	7.3	1
7	Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. IScience, 2022, 25, 104432.	4.1	4
8	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	12.8	21
9	Advances in fungal chemical genomics for the discovery of new antifungal agents. Annals of the New York Academy of Sciences, 2021, 1496, 5-22.	3.8	21
10	Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. Journal of Medicinal Chemistry, 2021, 64, 1139-1169.	6.4	23
11	Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nature Reviews Microbiology, 2021, 19, 454-466.	28.6	142
12	Mitochondrial perturbation reduces susceptibility to xenobiotics through altered efflux in <i>Candida albicans</i> . Genetics, 2021, 219, .	2.9	11
13	The macrophage-derived protein PTMA induces filamentation of the human fungal pathogen Candida albicans. Cell Reports, 2021, 36, 109584.	6.4	12
14	A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genetics, 2021, 17, e1009629.	3.5	6
15	Antifungal Drug Resistance: Molecular Mechanisms in <i>Candida albicans</i> and Beyond. Chemical Reviews, 2021, 121, 3390-3411.	47.7	338
16	A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nature Communications, 2021, 12, 6151.	12.8	50
17	Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nature Communications, 2021, 12, 6497.	12.8	33
18	Antifungal drug resistance: Deciphering the mechanisms governing multidrug resistance in the fungal pathogen Candida glabrata. Current Biology, 2021, 31, R1520-R1523.	3.9	11

NICOLE ROBBINS

#	Article	IF	CITATIONS
19	Design and Synthesis of Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 2139-2180.	6.4	46
20	Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chemical Biology, 2020, 27, 269-282.e5.	5.2	49
21	Flow Cytometric Measurement of Efflux in <i>Candida</i> Species. Current Protocols in Microbiology, 2020, 59, e121.	6.5	2
22	An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nature Communications, 2020, 11, 6429.	12.8	49
23	Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris. MBio, 2020, 11, .	4.1	27
24	Oxadiazole-Containing Macrocyclic Peptides Potentiate Azole Activity against Pathogenic <i>Candida</i> Species. MSphere, 2020, 5, .	2.9	12
25	Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nature Communications, 2019, 10, 402.	12.8	85
26	Genetic Analysis of <i>Candida auris</i> Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance. MBio, 2019, 10, .	4.1	77
27	Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1–Hsp90 pathway. PLoS Biology, 2019, 17, e2006966.	5.6	19
28	Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genetics, 2019, 15, e1007901.	3.5	17
29	Antifungal drug resistance: evolution, mechanisms and impact. Current Opinion in Microbiology, 2018, 45, 70-76.	5.1	323
30	Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Research, 2018, 18, .	2.3	19
31	Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans. Cell Reports, 2018, 23, 2292-2298.	6.4	42
32	Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genetics, 2018, 14, e1007319.	3.5	37
33	Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space. PLoS Genetics, 2018, 14, e1007270.	3.5	42
34	Combinatorial strategies for combating invasive fungal infections. Virulence, 2017, 8, 169-185.	4.4	146
35	Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A. MSphere, 2017, 2, .	2.9	17
36	The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends in Microbiology, 2017, 25, 809-819.	7.7	63

NICOLE ROBBINS

#	Article	IF	CITATIONS
37	Molecular Evolution of Antifungal Drug Resistance. Annual Review of Microbiology, 2017, 71, 753-775.	7.3	303
38	The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nature Communications, 2017, 8, 499.	12.8	49
39	Extensive functional redundancy in the regulation of <scp><i>C</i></scp> <i>andida albicans</i> drug resistance and morphogenesis by lysine deacetylases <scp>H</scp> os2, <scp>H</scp> da1, <scp>R</scp> pd3 and <scp>R</scp> pd31. Molecular Microbiology, 2017, 103, 635-656.	2.5	31
40	Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues. PLoS Genetics, 2016, 12, e1006405.	3.5	35
41	Antifungal Drugs: The Current Armamentarium and Development of New Agents. Microbiology Spectrum, 2016, 4, .	3.0	159
42	Discovery of Ibomycin, a Complex Macrolactone that Exerts Antifungal Activity by Impeding Endocytic Trafficking and Membrane Function. Cell Chemical Biology, 2016, 23, 1383-1394.	5.2	27
43	Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genetics, 2016, 12, e1006350.	3.5	39
44	Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation. PLoS Genetics, 2016, 12, e1006452.	3.5	32
45	An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens. Cell Reports, 2015, 13, 1481-1492.	6.4	68
46	Lysine Deacetylases Hda1 and Rpd3 Regulate Hsp90 Function thereby Governing Fungal Drug Resistance. Cell Reports, 2012, 2, 878-888.	6.4	96
47	Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiology and Molecular Biology Reviews, 2011, 75, 213-267.	6.6	448
48	Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathogens, 2011, 7, e1002257.	4.7	231
49	Metabolic control of antifungal drug resistance. Fungal Genetics and Biology, 2010, 47, 81-93.	2.1	34
50	Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida albicans via Calcineurin. PLoS Pathogens, 2009, 5, e1000532.	4.7	296
51	Antifungal Drugs: The Current Armamentarium and Development of New Agents. , 0, , 903-922.		13