Nicole Robbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824514/publications.pdf

Version: 2024-02-01

		201674	189892
51	3,681	27	50
papers	citations	h-index	g-index
56	56	56	3373
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiology and Molecular Biology Reviews, 2011, 75, 213-267.	6.6	448
2	Antifungal Drug Resistance: Molecular Mechanisms in <i>Candida albicans</i> and Beyond. Chemical Reviews, 2021, 121, 3390-3411.	47.7	338
3	Antifungal drug resistance: evolution, mechanisms and impact. Current Opinion in Microbiology, 2018, 45, 70-76.	5.1	323
4	Molecular Evolution of Antifungal Drug Resistance. Annual Review of Microbiology, 2017, 71, 753-775.	7. 3	303
5	Hsp90 Governs Echinocandin Resistance in the Pathogenic Yeast Candida albicans via Calcineurin. PLoS Pathogens, 2009, 5, e1000532.	4.7	296
6	Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathogens, 2011, 7, e1002257.	4.7	231
7	Antifungal Drugs: The Current Armamentarium and Development of New Agents. Microbiology Spectrum, 2016, 4, .	3.0	159
8	Combinatorial strategies for combating invasive fungal infections. Virulence, 2017, 8, 169-185.	4.4	146
9	Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nature Reviews Microbiology, 2021, 19, 454-466.	28.6	142
10	Lysine Deacetylases Hda1 and Rpd3 Regulate Hsp90 Function thereby Governing Fungal Drug Resistance. Cell Reports, 2012, 2, 878-888.	6.4	96
11	Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nature Communications, 2019, 10, 402.	12.8	85
12	Genetic Analysis of $\langle i \rangle$ Candida auris $\langle i \rangle$ Implicates Hsp90 in Morphogenesis and Azole Tolerance and Cdr1 in Azole Resistance. MBio, 2019, 10, .	4.1	77
13	An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens. Cell Reports, 2015, 13, 1481-1492.	6.4	68
14	The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends in Microbiology, 2017, 25, 809-819.	7.7	63
15	A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nature Communications, 2021, 12, 6151.	12.8	50
16	The Candida albicans transcription factor Cas5 couples stress responses, drug resistance and cell cycle regulation. Nature Communications, 2017, 8, 499.	12.8	49
17	Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chemical Biology, 2020, 27, 269-282.e5.	5.2	49
18	An oxindole efflux inhibitor potentiates azoles and impairs virulence in the fungal pathogen Candida auris. Nature Communications, 2020, 11 , 6429.	12.8	49

#	Article	IF	CITATIONS
19	Design and Synthesis of Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 2139-2180.	6.4	46
20	Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans. Cell Reports, 2018, 23, 2292-2298.	6.4	42
21	Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space. PLoS Genetics, 2018, 14, e1007270.	3.5	42
22	Metal Chelation as a Powerful Strategy to Probe Cellular Circuitry Governing Fungal Drug Resistance and Morphogenesis. PLoS Genetics, 2016, 12, e1006350.	3.5	39
23	Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genetics, 2018, 14, e1007319.	3.5	37
24	Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues. PLoS Genetics, 2016, 12, e1006405.	3.5	35
25	Metabolic control of antifungal drug resistance. Fungal Genetics and Biology, 2010, 47, 81-93.	2.1	34
26	Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nature Communications, 2021, 12, 6497.	12.8	33
27	Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation. PLoS Genetics, 2016, 12, e1006452.	3.5	32
28	Extensive functional redundancy in the regulation of <scp><i>C</i></scp> <i>andida albicans</i> drug resistance and morphogenesis by lysine deacetylases <scp>H</scp> os2, <scp>H</scp> da1, <scp>R</scp> pd3 and <scp>R</scp> pd31. Molecular Microbiology, 2017, 103, 635-656.	2.5	31
29	The role of Candida albicans stress response pathways in antifungal tolerance and resistance. IScience, 2022, 25, 103953.	4.1	29
30	Discovery of Ibomycin, a Complex Macrolactone that Exerts Antifungal Activity by Impeding Endocytic Trafficking and Membrane Function. Cell Chemical Biology, 2016, 23, 1383-1394.	5.2	27
31	Translation Inhibition by Rocaglates Activates a Species-Specific Cell Death Program in the Emerging Fungal Pathogen Candida auris. MBio, 2020, 11 , .	4.1	27
32	Fungal-Selective Resorcylate Aminopyrazole Hsp90 Inhibitors: Optimization of Whole-Cell Anticryptococcal Activity and Insights into the Structural Origins of Cryptococcal Selectivity. Journal of Medicinal Chemistry, 2021, 64, 1139-1169.	6.4	23
33	Advances in fungal chemical genomics for the discovery of new antifungal agents. Annals of the New York Academy of Sciences, 2021, 1496, 5-22.	3.8	21
34	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	12.8	21
35	Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits. FEMS Yeast Research, 2018, 18, .	2.3	19
36	Environment-induced same-sex mating in the yeast Candida albicans through the Hsf1–Hsp90 pathway. PLoS Biology, 2019, 17, e2006966.	5.6	19

#	Article	IF	CITATIONS
37	Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A. MSphere, 2017, 2, .	2.9	17
38	Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genetics, 2019, 15, e1007901.	3 . 5	17
39	Antifungal Drugs: The Current Armamentarium and Development of New Agents. , 0, , 903-922.		13
40	Bacterialâ€fungal interactions and their impact on microbial pathogenesis. Molecular Ecology, 2023, 32, 2565-2581.	3.9	13
41	Oxadiazole-Containing Macrocyclic Peptides Potentiate Azole Activity against Pathogenic <i>Candida</i> Species. MSphere, 2020, 5, .	2.9	12
42	The macrophage-derived protein PTMA induces filamentation of the human fungal pathogen Candida albicans. Cell Reports, 2021, 36, 109584.	6.4	12
43	Genetic analysis of Hsp90 function in <i>Cryptococcus neoformans</i> highlights key roles in stress tolerance and virulence. Genetics, 2022, 220, .	2.9	12
44	Mitochondrial perturbation reduces susceptibility to xenobiotics through altered efflux in <i>Candida albicans</i>	2.9	11
45	Antifungal drug resistance: Deciphering the mechanisms governing multidrug resistance in the fungal pathogen Candida glabrata. Current Biology, 2021, 31, R1520-R1523.	3.9	11
46	A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genetics, 2021, 17, e1009629.	3 . 5	6
47	Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. IScience, 2022, 25, 104432.	4.1	4
48	High-Throughput Chemical Screen Identifies a 2,5-Disubstituted Pyridine as an Inhibitor of Candida albicans Erg11. MSphere, 2022, 7, e0007522.	2.9	3
49	Flow Cytometric Measurement of Efflux in <i>Candida</i> Species. Current Protocols in Microbiology, 2020, 59, e121.	6.5	2
50	Genomic Approaches to Antifungal Drug Target Identification and Validation. Annual Review of Microbiology, 2022, 76, .	7.3	1
51	Interactions Between Intracellular Fungal Pathogens and Host Phagocytes. , 2022, , .		0