
James A Huntington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of a serpin–protease complex shows inhibition by deformation. Nature, 2000, 407, 923-926.	27.8	1,022
2	Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin. Nature Structural and Molecular Biology, 2004, 11, 857-862.	8.2	345
3	Directing thrombin. Blood, 2005, 106, 2605-2612.	1.4	298
4	Structure and properties of ovalbumin. Biomedical Applications, 2001, 756, 189-198.	1.7	283
5	Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature, 2008, 455, 1255-1258.	27.8	236
6	How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nature Structural and Molecular Biology, 2003, 10, 541-544.	8.2	217
7	Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11079-11084.	7.1	188
8	Antithrombin–S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. EMBO Journal, 2006, 25, 2029-2037.	7.8	163
9	Molecular basis of α ₁ â€antitrypsin deficiency revealed by the structure of a domainâ€swapped trimer. EMBO Reports, 2011, 12, 1011-1017.	4.5	142
10	Shape-shifting serpins – advantages of a mobile mechanism. Trends in Biochemical Sciences, 2006, 31, 427-435.	7.5	136
11	Crystal Structure of Thrombin Bound to Heparin. Journal of Biological Chemistry, 2005, 280, 2745-2749.	3.4	133
12	Serpins Flex Their Muscle. Journal of Biological Chemistry, 2010, 285, 24299-24305.	3.4	128
13	The Serpin Inhibitory Mechanism Is Critically Dependent on the Length of the Reactive Center Loop. Journal of Biological Chemistry, 2001, 276, 27541-27547.	3.4	121
14	Design and characterization of an APC-specific serpin for the treatment of hemophilia. Blood, 2017, 129, 105-113.	1.4	119
15	A 2.6 å structure of a serpin polymer and implications for conformational disease 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 293, 449-455.	4.2	116
16	Serpins Flex Their Muscle. Journal of Biological Chemistry, 2010, 285, 24307-24312.	3.4	97
17	Thrombin-Cofactor Interactions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1738-1745.	2.4	90
18	How Small Peptides Block and Reverse Serpin Polymerisation. Journal of Molecular Biology, 2004, 342, 931-941.	4.2	82

2

JAMES A HUNTINGTON

#	Article	IF	CITATIONS
19	Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-â,,« structure of the ternary complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 645-650.	7.1	78
20	Formation of the Antithrombin Heterodimer In Vivo and the Onset of Thrombosis. Blood, 1999, 94, 3388-3396.	1.4	76
21	Structure and Mechanism of Cysteine Peptidase Gingipain K (Kgp), a Major Virulence Factor of Porphyromonas gingivalis in Periodontitis. Journal of Biological Chemistry, 2014, 289, 32291-32302.	3.4	74
22	The Molecular Basis of Thrombin Allostery Revealed by a 1.8 à Structure of the "Slow―Form. Structure, 2003, 11, 469-479.	3.3	69
23	Crystal Structure of Antithrombin in a Heparin-Bound Intermediate Stateâ€,‡. Biochemistry, 2003, 42, 8712-8719.	2.5	68
24	Targeting thrombin – rational drug design from natural mechanisms. Trends in Pharmacological Sciences, 2003, 24, 589-595.	8.7	66
25	How Na ⁺ activates thrombin – a review of the functional and structural data. Biological Chemistry, 2008, 389, 1025-1035.	2.5	64
26	Serpin Conformational Change in Ovalbumin. Enhanced Reactive Center Loop Insertion through Hinge Region Mutationsâ€. Biochemistry, 1997, 36, 5432-5440.	2.5	62
27	Serpin Polymerization Is Prevented by a Hydrogen Bond Network That Is Centered on His-334 and Stabilized by Glycerol. Journal of Biological Chemistry, 2003, 278, 15116-15122.	3.4	62
28	Crystal structure of the prothrombinase complex from the venom of Pseudonaja textilis. Blood, 2013, 122, 2777-2783.	1.4	62
29	Crystal Structure of Monomeric Native Antithrombin Reveals a Novel Reactive Center Loop Conformation. Journal of Biological Chemistry, 2006, 281, 35478-35486.	3.4	59
30	Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-â,,« structure of the heparin-bridged complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4661-4666.	7.1	59
31	Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Advances, 2017, 1, 1224-1237.	5.2	55
32	Crystal structure of wild-type human thrombin in the Na+-free state. Biochemical Journal, 2005, 392, 21-28.	3.7	54
33	The Heparin Binding Properties of Heparin Cofactor II Suggest an Antithrombin-like Activation Mechanism. Journal of Biological Chemistry, 2004, 279, 50267-50273.	3.4	53
34	Crystal Structure of Anticoagulant Thrombin Variant E217K Provides Insights into Thrombin Allostery. Journal of Biological Chemistry, 2004, 279, 26387-26394.	3.4	52
35	The Critical Role of Hinge-Region Expulsion in the Induced-Fit Heparin Binding Mechanism of Antithrombin. Journal of Molecular Biology, 2009, 386, 1278-1289.	4.2	51
36	Antithrombinâ^'Heparin Affinity Reduced by Fucosylation of Carbohydrate at Asparagine 155â€. Biochemistry, 1996, 35, 8881-8889.	2.5	50

JAMES A HUNTINGTON

#	Article	IF	CITATIONS
37	Helix D Elongation and Allosteric Activation of Antithrombin. Journal of Biological Chemistry, 2002, 277, 8551-8558.	3.4	50
38	The Serpins: Nature's Molecular Mousetraps. Science Progress, 2001, 84, 125-136.	1.9	47
39	Natural inhibitors of thrombin. Thrombosis and Haemostasis, 2014, 111, 583-589.	3.4	47
40	A hereditary bleeding disorder resulting from a premature stop codon in thrombomodulin (p.Cys537Stop). Blood, 2014, 124, 1951-1956.	1.4	45
41	Thrombin plasticity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 246-252.	2.3	44
42	Crystal Structure of Protein C Inhibitor Provides Insights into Hormone Binding and Heparin Activation. Structure, 2003, 11, 205-215.	3.3	43
43	Homozygous Deficiency of Heparin Cofactor II. Circulation, 2004, 110, 1303-1307.	1.6	43
44	The P6â^'P2 Region of Serpins Is Critical for Proteinase Inhibition and Complex Stability. Biochemistry, 1997, 36, 9562-9570.	2.5	40
45	Targeting activated protein C to treat hemophilia. Current Opinion in Hematology, 2017, 24, 446-452.	2.5	38
46	<i><scp>SERPINC</scp>1</i> gene mutations in antithrombin deficiency. British Journal of Haematology, 2017, 178, 279-285.	2.5	36
47	Heparin-induced substrate behavior of antithrombin Cambridge II. Blood, 2003, 102, 4028-4034.	1.4	35
48	Structure of Native Protein C Inhibitor Provides Insight into Its Multiple Functions. Journal of Biological Chemistry, 2007, 282, 13759-13768.	3.4	35
49	GpIbα Interacts Exclusively with Exosite II of Thrombin. Journal of Molecular Biology, 2014, 426, 881-893.	4.2	35
50	Role of Arginine 132 and Lysine 133 in Heparin Binding to and Activation of Antithrombin. Journal of Biological Chemistry, 1996, 271, 29353-29358.	3.4	34
51	Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis. FEBS Journal, 2006, 273, 2450-2552.	4.7	34
52	Allosteric Activation of Antithrombin Critically Depends upon Hinge Region Extension. Journal of Biological Chemistry, 2004, 279, 47288-47297.	3.4	32
53	The Heparin Binding Site of Protein C Inhibitor Is Protease-dependent. Journal of Biological Chemistry, 2008, 283, 36039-36045.	3.4	31
54	Crystal structures of protease nexin-1 in complex with heparin and thrombin suggest a 2-step recognition mechanism. Blood, 2012, 120, 459-467.	1.4	31

JAMES A HUNTINGTON

#	Article	IF	CITATIONS
55	Identification of a Catalytic Exosite for Complement Component C4 on the Serine Protease Domain of C1s. Journal of Immunology, 2012, 189, 2365-2373.	0.8	28
56	Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations*. Journal of Biological Chemistry, 2010, 285, 30752-30758.	3.4	27
57	Thrombin Inhibition by Serpins Disrupts Exosite II. Journal of Biological Chemistry, 2010, 285, 38621-38629.	3.4	21
58	Discovery and characterisation of an antibody that selectively modulates the inhibitory activity of plasminogen activator inhibitor-1. Scientific Reports, 2019, 9, 1605.	3.3	20
59	Characterization of the neutralizing antiâ€emicizumab antibody in a patient with hemophilia A and inhibitor. Journal of Thrombosis and Haemostasis, 2021, 19, 711-718.	3.8	19
60	The Influence of Hinge Region Residue Glu-381 on Antithrombin Allostery and Metastability. Journal of Biological Chemistry, 2004, 279, 4913-4921.	3.4	18
61	Structural transitions during prothrombin activation: On the importance of fragment 2. Biochimie, 2016, 122, 235-242.	2.6	17
62	Z-α ₁ -antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. Science Advances, 2022, 8, eabm2094.	10.3	15
63	Molecular contortionism – on the physical limits of serpin â€~loop-sheet' polymers. Biological Chemistry, 2010, 391, 973-82.	2.5	14
64	Identification of serpins specific for activated protein C using a lysate-based screening assay. Scientific Reports, 2018, 8, 8793.	3.3	14
65	The Shapes of Z- Î \pm 1 -Antitrypsin Polymers in Solution Support the C-Terminal Domain-Swap Mechanism of Polymerization. Biophysical Journal, 2014, 107, 1905-1912.	0.5	13
66	lxodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement. International Journal of Molecular Sciences, 2021, 22, 9480.	4.1	13
67	Heparin Activation of Serpins. , 2005, , 367-398.		12
68	New insight into serpin polymerization and aggregation. Prion, 2009, 3, 12-14.	1.8	12
69	Structural insights unravel the zymogenic mechanism of the virulence factor gingipain K from Porphyromonas gingivalis, a causative agent of gum disease from the human oral microbiome. Journal of Biological Chemistry, 2017, 292, 5724-5735.	3.4	8
70	Serpin Polymerization In Vitro. Methods in Enzymology, 2011, 501, 379-420.	1.0	6
71	Linkage analysis combined with whole-exome sequencing identifies a novel prothrombin (<i>F2</i>) gene mutation in a Dutch Caucasian family with unexplained thrombosis. Haematologica, 2020, 105, e370-e372.	3.5	6
72	Allosteric activation of antithrombin is independent of charge neutralization or reversal in the heparin binding site. FEBS Letters, 2006, 580, 4709-4712.	2.8	5

#	ARTICLE	IF	CITATIONS
73	Structural Insights into the Life History of Thrombin. , 2008, , 80-106.		4
74	Slow thrombin in solution. Biochemical Journal, 2005, 390, e1-3.	3.7	2
75	Regulatory Mechanisms in Hemostasis. , 2018, , 1906-1911.		1
76	Addendum: Kotál et al. Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement. Int. J. Mol. Sci. 2021, 22, 9480. International Journal of Molecular Sciences, 2021, 22, 11271.	4.1	0