P J Weimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824114/publications.pdf

Version: 2024-02-01

		101543	168389
53	4,266	36	53
papers	citations	h-index	g-index
54	54	54	3160
all docs	docs citations	times ranked	citing authors
			J

#	Article	IF	CITATIONS
1	Symposium review: Host–rumen microbe interactions may be leveraged to improve the productivity of dairy cows. Journal of Dairy Science, 2018, 101, 7680-7689.	3.4	48
2	In vitro ruminal fermentation of treated alfalfa silage using ruminal inocula from high and low feed-efficient lactating cows. Journal of Applied Microbiology, 2016, 121, 333-340.	3.1	9
3	Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes. Journal of Dairy Science, 2016, 99, 245-257.	3.4	22
4	Effects of ruminal dosing of Holstein cows with Megasphaera elsdenii on milk fat production, ruminal chemistry, and bacterial strain persistence. Journal of Dairy Science, 2015, 98, 8078-8092.	3.4	29
5	Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Applied Microbiology and Biotechnology, 2013, 97, 4075-4081.	3.6	89
6	Fermentation of alfalfa wet-fractionation liquids to volatile fatty acids by Streptococcus bovis and Megasphaera elsdenii. Bioresource Technology, 2013, 142, 88-94.	9.6	25
7	Changes in ruminal bacterial community composition following feeding of alfalfa ensiled with a lactic acid bacterial inoculant. Journal of Dairy Science, 2012, 95, 328-339.	3.4	31
8	Individual animal variability in ruminal bacterial communities and ruminal acidosis in primiparous Holstein cows during the periparturient period. Journal of Dairy Science, 2012, 95, 6716-6730.	3.4	45
9	Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresource Technology, 2010, 101, 3106-3114.	9.6	234
10	Shifts in bacterial community composition in the rumen of lactating dairy cows under milk fat-depressing conditions. Journal of Dairy Science, 2010, 93, 265-278.	3.4	91
11	pH dynamics and bacterial community composition in the rumen of lactating dairy cows. Journal of Dairy Science, 2010, 93, 279-287.	3.4	81
12	Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. Journal of Dairy Science, 2010, 93, 5902-5912.	3.4	235
13	Single-Pass Harvest of Corn Grain and Stover: Performance of Three Harvester Configurations. Transactions of the ASABE, 2009, 52, 51-60.	1.1	49
14	Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol. Crop Science, 2009, 49, 85-98.	1.8	66
15	Sucrose concentration alters fermentation kinetics, products, and carbon fates during in vitro fermentation with mixed ruminal microbes1. Journal of Animal Science, 2007, 85, 1467-1478.	0.5	39
16	Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments. Bioresource Technology, 2007, 98, 1615-1621.	9.6	44
17	Wood adhesives prepared from lucerne fiber fermentation residues of Ruminococcus albus and Clostridium thermocellum. Applied Microbiology and Biotechnology, 2005, 66, 635-640.	3.6	21
18	In vitro gas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Applied Microbiology and Biotechnology, 2005, 67, 52-58.	3. 6	60

#	Article	IF	CITATIONS
19	Solid residues from Ruminococcus cellulose fermentations as components of wood adhesive formulations. Applied Microbiology and Biotechnology, 2003, 63, 29-34.	3.6	23
20	The survival of silage inoculant lactic acid bacteria in rumen fluid. Journal of Applied Microbiology, 2003, 94, 1066-1071.	3.1	99
21	Initial pH as a Determinant of Cellulose Digestion Rate by Mixed Ruminal Microorganisms In Vitro. Journal of Dairy Science, 2001, 84, 848-859.	3.4	107
22	Fermentation of a Bacterial Cellulose/Xylan Composite by Mixed Ruminal Microflora:Â Implications for the Role of Polysaccharide Matrix Interactions in Plant Cell Wall Biodegradability. Journal of Agricultural and Food Chemistry, 2000, 48, 1727-1733.	5.2	30
23	Effect of Diet on Populations of Three Species of Ruminal Cellulolytic Bacteria in Lactating Dairy Cows. Journal of Dairy Science, 1999, 82, 122-134.	3.4	130
24	Manipulating ruminal fermentation: a microbial ecological perspective Journal of Animal Science, 1998, 76, 3114.	0.5	128
25	Method for measuring gas production kinetics. BSAP Occasional Publication, 1998, 22, 209-211.	0.0	3
26	Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Applied and Environmental Microbiology, 1997, 63, 734-742.	3.1	50
27	Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Applied and Environmental Microbiology, 1997, 63, 743-748.	3.1	16
28	Why Don't Ruminal Bacteria Digest Cellulose Faster?. Journal of Dairy Science, 1996, 79, 1496-1502.	3.4	148
29	Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Applied and Environmental Microbiology, 1996, 62, 1084-1088.	3.1	40
30	Degradation characteristics of isolated andin situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. Journal of the Science of Food and Agriculture, 1995, 69, 185-196.	3. 5	84
31	Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation. Biotechnology and Bioengineering, 1995, 48, 169-178.	3.3	59
32	Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol. Applied Microbiology and Biotechnology, 1995, 44, 507-513.	3.6	113
33	Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol. Applied Microbiology and Biotechnology, 1995, 44, 507-513.	3.6	35
34	Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Applied and Environmental Microbiology, 1995, 61, 1757-1762.	3.1	70
35	Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Archives of Microbiology, 1993, 160, 288-294.	2.2	79
36	Inhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer). Applied and Environmental Microbiology, 1993, 59, 405-409.	3.1	26

#	Article	IF	CITATIONS
37	Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Applied and Environmental Microbiology, 1992, 58, 2583-2591.	3.1	74
38	Automated screening of inhibitors of bacterial dissimilatory sulfate reduction. Applied Microbiology and Biotechnology, 1991, 35, 297-300.	3.6	1
39	Differential Fermentation of Cellulose Allomorphs by Ruminal Cellulolytic Bacteria. Applied and Environmental Microbiology, 1991, 57, 3101-3106.	3.1	65
40	Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Applied and Environmental Microbiology, 1990, 56, 2421-2429.	3.1	144
41	Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of <i>Desulfovibrio desulfuricans</i> Environmental Microbiology, 1988, 54, 386-396.	3.1	93
42	Anaerobic Fermentation of Woody Biomass Pretreated with Supercritical Ammonia. Applied and Environmental Microbiology, 1986, 52, 733-736.	3.1	7
43	Thermophilic anaerobic fermentation of hemicellulose and hemicellulose-derived aldose sugars by Thermoanaerobacter strain B6A. Archives of Microbiology, 1985, 143, 130-136.	2.2	27
44	Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnology and Bioengineering, 1985, 27, 1540-1547.	3.3	66
45	Thermophilic anaerobic bacteria which ferment hemicellulose: characterization of organisms and identification of plasmids. Archives of Microbiology, 1984, 138, 31-36.	2.2	51
46	Fermentation of 6-Deoxyhexoses by Bacillus macerans. Applied and Environmental Microbiology, 1984, 47, 263-267.	3.1	22
47	Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the marburg strain. Current Microbiology, 1980, 3, 381-386.	2.2	120
48	Acetate assimilation pathway of Methanosarcina barkeri. Journal of Bacteriology, 1979, 137, 332-339.	2.2	80
49	Acetate metabolism inMethanosarcina barkeri. Archives of Microbiology, 1978, 119, 175-182.	2.2	151
50	One carbon metabolism in methanogenic bacteria. Archives of Microbiology, 1978, 119, 49-57.	2.2	169
51	Cellulolytic and physiological properties of Clostridium thermocellum. Archives of Microbiology, 1977, 114, 1-7.	2.2	286
52	Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Applied and Environmental Microbiology, 1977, 33, 289-297.	3.1	365
53	Bacterial methanogenesis: Acetate as a methane precursor in pure culture. Archives of Microbiology, 1975, 104, 129-134.	2.2	87