Martijn Bekker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11824042/publications.pdf Version: 2024-02-01

MADTIIN REKKED

#	Article	IF	CITATIONS
1	The ArcBA Two-Component System of <i>Escherichia coli</i> Is Regulated by the Redox State of both the Ubiquinone and the Menaquinone Pool. Journal of Bacteriology, 2010, 192, 746-754.	2.2	148
2	Effects of Fluconazole on the Secretome, the Wall Proteome, and Wall Integrity of the Clinical Fungus Candida albicans. Eukaryotic Cell, 2011, 10, 1071-1081.	3.4	97
3	On the function of the various quinone species in <i>Escherichia coli</i> . FEBS Journal, 2012, 279, 3364-3373.	4.7	77
4	Role of phosphate in the central metabolism of two lactic acid bacteria – a comparative systems biology approach. FEBS Journal, 2012, 279, 1274-1290.	4.7	52
5	Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1269-1279.	2.3	40
6	The Role of Two-Component Regulation Systems in the physiology of the Bacterial Cell. Science Progress, 2006, 89, 213-242.	1.9	35
7	Dissipation of Proton Motive Force is not Sufficient to Induce the Phage Shock Protein Response in Escherichia coli. Current Microbiology, 2011, 62, 1374-1385.	2.2	33
8	Monte-Carlo Modeling of the Central Carbon Metabolism of Lactococcus lactis: Insights into Metabolic Regulation. PLoS ONE, 2014, 9, e106453.	2.5	31
9	Kinase Activity of ArcB from Escherichia coli Is Subject to Regulation by Both Ubiquinone and Demethylmenaquinone. PLoS ONE, 2013, 8, e75412.	2.5	27
10	Characterization of Three Lactic Acid Bacteria and Their Isogenic <i>ldh</i> Deletion Mutants Shows Optimization for <i>Y</i> _{ATP} (Cell Mass Produced per Mole of ATP) at Their Physiological pHs. Applied and Environmental Microbiology, 2011, 77, 612-617.	3.1	25
11	Molecular physiology of the dynamic regulation of carbon catabolite repression in Escherichia coli. Microbiology (United Kingdom), 2014, 160, 1214-1223.	1.8	23
12	Dynamic regulation of mitochondrial respiratory chain efficiency in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2011, 157, 3500-3511.	1.8	19
13	Uncoupling of Substrate-Level Phosphorylation in Escherichia coli during Glucose-Limited Growth. Applied and Environmental Microbiology, 2012, 78, 6908-6913.	3.1	19
14	Growth Rate-Dependent Control in Enterococcus faecalis: Effects on the Transcriptome and Proteome, and Strong Regulation of Lactate Dehydrogenase. Applied and Environmental Microbiology, 2012, 78, 170-176.	3.1	11
15	Dynamic changes of the Escherichia coli transcriptome and proteome exerted by glucose repression. FASEB Journal, 2013, 27, lb136.	0.5	0