
Richard G Luthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11823254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrophilic trace organic contaminants in urban stormwater: occurrence, toxicological relevance, and the need to enhance green stormwater infrastructure. Environmental Science: Water Research and Technology, 2020, 6, 15-44.	1.2	66
2	Bioturbation facilitates DDT sequestration by activated carbon against recontamination by sediment deposition. Environmental Toxicology and Chemistry, 2018, 37, 2013-2021.	2.2	9
3	Assessment of hydrophobic organic contaminant availability in sediments after sorbent amendment and its complete removal. Environmental Pollution, 2017, 231, 1380-1387.	3.7	5
4	Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an <i>Arabidopsis</i> model system. Environmental Toxicology and Chemistry, 2016, 35, 1138-1147.	2.2	59
5	Measuring and Modeling Organochlorine Pesticide Response to Activated Carbon Amendment in Tidal Sediment Mesocosms. Environmental Science & Technology, 2016, 50, 4769-4777.	4.6	9
6	Decision-making framework for the application of in-situ activated carbon amendment to sediment. Journal of Hazardous Materials, 2016, 306, 184-192.	6.5	6
7	Performance of retrievable activated carbons to treat sediment contaminated with polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2016, 320, 359-367.	6.5	17
8	Predicted effectiveness of in-situ activated carbon amendment for field sediment sites with variable site- and compound-specific characteristics. Journal of Hazardous Materials, 2016, 301, 424-432.	6.5	8
9	Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants. Journal of Hazardous Materials, 2016, 304, 352-359.	6.5	23
10	In situ sediment treatment using activated carbon: A demonstrated sediment cleanup technology. Integrated Environmental Assessment and Management, 2015, 11, 195-207.	1.6	72
11	In Situ Sequestration of Hydrophobic Organic Contaminants in Sediments under Stagnant Contact with Activated Carbon. 2. Mass Transfer Modeling. Environmental Science & Technology, 2014, 48, 1843-1850.	4.6	18
12	Bioturbation Delays Attenuation of DDT by Clean Sediment Cap but Promotes Sequestration by Thin-Layered Activated Carbon. Environmental Science & Technology, 2014, 48, 1175-1183.	4.6	27
13	In Situ Sequestration of Hydrophobic Organic Contaminants in Sediments under Stagnant Contact with Activated Carbon. 1. Column Studies. Environmental Science & Technology, 2014, 48, 1835-1842.	4.6	36
14	In Situ Treatment for Control of Hydrophobic Organic Contaminants Using Sorbent Amendment: Theoretical Assessments. SERDP and ESTCP Remediation Technology Monograph Series, 2014, , 305-323.	0.3	2
15	Measurement and Modeling of Activated Carbon Performance for the Sequestration of Parent- and Alkylated-Polycyclic Aromatic Hydrocarbons in Petroleum-Impacted Sediments. Environmental Science & Technology, 2013, 47, 1024-1032.	4.6	44
16	Assessment of Nontoxic, Secondary Effects of Sorbent Amendment to Sediments on the Deposit-Feeding Organism <i>Neanthes arenaceodentata</i> . Environmental Science & Technology, 2012, 46, 4134-4141.	4.6	32
17	Sorption of Organic Compounds to Fresh and Field-Aged Activated Carbons in Soils and Sediments. Environmental Science & Technology, 2012, 46, 810-817.	4.6	65
18	Long-term monitoring and modeling of the mass transfer of polychlorinated biphenyls in sediment following pilot-scale in-situ amendment with activated carbon. Journal of Contaminant Hydrology, 2012, 129-130, 25-37.	1.6	59

#	Article	IF	CITATIONS
19	In Situ Measurement of PCB Pore Water Concentration Profiles in Activated Carbon-Amended Sediment Using Passive Samplers. Environmental Science & Technology, 2011, 45, 4053-4059.	4.6	82
20	In-situ Sorbent Amendments: A New Direction in Contaminated Sediment Management. Environmental Science & Technology, 2011, 45, 1163-1168.	4.6	333
21	Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron. Environmental Science & Technology, 2011, 45, 4896-4903.	4.6	157
22	Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon. Water Research, 2011, 45, 453-460.	5.3	45
23	Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants. Environmental Health Perspectives, 2011, 119, 6-10.	2.8	24
24	Assessment of fieldâ€related influences on polychlorinated biphenyl exposures and sorbent amendment using polychaete bioassays and passive sampler measurements. Environmental Toxicology and Chemistry, 2011, 30, 173-180.	2.2	41
25	PCBâ€induced changes of a benthic community and expected ecosystem recovery following in situ sorbent amendment. Environmental Toxicology and Chemistry, 2011, 30, 1819-1826.	2.2	19
26	Noncovalent Interactions of Long-Chain Perfluoroalkyl Acids with Serum Albumin. Environmental Science & Technology, 2010, 44, 5263-5269.	4.6	135
27	Polychlorinated Biphenyl Sorption and Availability in Field-Contaminated Sediments. Environmental Science & Technology, 2010, 44, 2809-2815.	4.6	54
28	Assessment of Advective Porewater Movement Affecting Mass Transfer of Hydrophobic Organic Contaminants in Marine Intertidal Sediment. Environmental Science & Technology, 2010, 44, 5842-5848.	4.6	13
29	Measurement and Modeling of Polychlorinated Biphenyl Bioaccumulation from Sediment for the Marine Polychaete <i>Neanthes arenaceodentata</i> and Response to Sorbent Amendment. Environmental Science & amp; Technology, 2010, 44, 2857-2863.	4.6	66
30	Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries. Water Research, 2009, 43, 4336-4346.	5.3	95
31	Field Application of Activated Carbon Amendment for In-Situ Stabilization of Polychlorinated Biphenyls in Marine Sediment. Environmental Science & Technology, 2009, 43, 3815-3823.	4.6	178
32	Modeling PAH mass transfer in a slurry of contaminated soil or sediment amended with organic sorbents. Water Research, 2008, 42, 2931-2942.	5.3	20
33	The stability of marine sediments at a tidal basin in San Francisco Bay amended with activated carbon for sequestration of organic contaminants. Water Research, 2008, 42, 4133-4145.	5.3	14
34	Measuring and modeling reduction of DDT availability to the water column and mussels following activated carbon amendment of contaminated sediment. Water Research, 2008, 42, 4348-4356.	5.3	38
35	Aerobic Biotransformation and Fate of <i>N</i> -Ethyl Perfluorooctane Sulfonamidoethanol (<i>N</i> -EtFOSE) in Activated Sludge. Environmental Science & Technology, 2008, 42, 2873-2878.	4.6	253
36	Field Deployment of Polyethylene Devices to Measure PCB Concentrations in Pore Water of Contaminated Sediment. Environmental Science & amp; Technology, 2008, 42, 6086-6091.	4.6	90

#	Article	IF	CITATIONS
37	Biodynamic Modeling of PCB Uptake by Macoma balthica and Corbicula fluminea from Sediment Amended with Activated Carbon. Environmental Science & Technology, 2008, 42, 484-490.	4.6	76
38	Field methods for amending marine sediment with activated carbon and assessing treatment effectiveness. Marine Environmental Research, 2007, 64, 541-555.	1.1	115
39	Modeling Sorption of Anionic Surfactants onto Sediment Materials:Â An a priori Approach for Perfluoroalkyl Surfactants and Linear Alkylbenzene Sulfonates. Environmental Science & Technology, 2007, 41, 3254-3261.	4.6	118
40	Bioaccumulation of Perfluorochemicals in Sediments by the Aquatic Oligochaete Lumbriculus variegatus. Environmental Science & amp; Technology, 2007, 41, 4600-4606.	4.6	123
41	AVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS FROM LAMPBLACK-IMPACTED SOILS AT FORMER OIL-GAS PLANT SITES IN CALIFORNIA, USA. Environmental Toxicology and Chemistry, 2007, 26, 394.	2.2	16
42	BIOLOGICAL UPTAKE OF POLYCHLORINATED BIPHENYLS BY MACOMA BALTHICA FROM SEDIMENT AMENDED WITH ACTIVATED CARBON. Environmental Toxicology and Chemistry, 2007, 26, 980.	2.2	82
43	Activated carbon amendment as a treatment for residual ddt in sediment from a superfund site in San Francisco Bay, Richmond, California, USA. Environmental Toxicology and Chemistry, 2007, 26, 2143-2150.	2.2	90
44	Sorption of Perfluorinated Surfactants on Sediments. Environmental Science & Technology, 2006, 40, 7251-7256.	4.6	1,095
45	New Perspectives on Perfluorochemical Ecotoxicology:Â Inhibition and Induction of an Efflux Transporter in the Marine Mussel,Mytilus californianus. Environmental Science & Technology, 2006, 40, 5580-5585.	4.6	61
46	Modeling Polychlorinated Biphenyl Mass Transfer after Amendment of Contaminated Sediment with Activated Carbon. Environmental Science & amp; Technology, 2006, 40, 4211-4218.	4.6	121
47	Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility. Environmental Science & Technology, 2006, 40, 7350-7357.	4.6	359
48	Nanometer-Scale Chemical Heterogeneities of Black Carbon Materials and Their Impacts on PCB Sorption Properties:Â Soft X-ray Spectromicroscopy Study. Environmental Science & Technology, 2006, 40, 5923-5929.	4.6	39
49	Human development is linked to multiple water body impairments along the California coast. Estuaries and Coasts, 2006, 29, 860-870.	1.0	27
50	Treatment and Containment of Contaminated Sediments. , 2006, , 137-178.		3
51	EFFECTS OF DOSE AND PARTICLE SIZE ON ACTIVATED CARBON TREATMENT TO SEQUESTER POLYCHLORINATED BIPHENYLS AND POLYCYCLIC AROMATIC HYDROCARBONS IN MARINE SEDIMENTS. Environmental Toxicology and Chemistry, 2005, 24, 1594.	2.2	127
52	PHYSICOCHEMICAL CHARACTERIZATION OF COKE-PLANT SOIL FOR THE ASSESSMENT OF POLYCYCLIC AROMATIC HYDROCARBON AVAILABILITY AND THE FEASIBILITY OF PHYTOREMEDIATION. Environmental Toxicology and Chemistry, 2005, 24, 2185.	2.2	45
53	Improving Risk Assessments for Manufactured Gas Plant Soils by Measuring PAH Availability. Integrated Environmental Assessment and Management, 2005, 1, 259.	1.6	9
54	Effect of Oil on Polychlorinated Biphenyl Phase Partitioning during Land Biotreatment of Impacted Sediment. Journal of Environmental Engineering, ASCE, 2005, 131, 278-286.	0.7	5

#	Article	IF	CITATIONS
	Addition of Activated Carbon to Sediments to Reduce PCB Bioaccumulation by a Polychaete (Neanthes) Tj ETQq1		<u> </u>
55	Technology, 2005, 39, 2880-2887.	4.6	172
56	Response to Comment on "Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments: Physicochemical Tests― Environmental Science & Technology, 2005, 39, 1199-1200.	4.6	3
57	The sequestration of PCBs in Lake Hartwell sediment with activated carbon. Water Research, 2005, 39, 2105-2113.	5.3	85
58	Quantitative Determination of Perfluorochemicals in Sediments and Domestic Sludge. Environmental Science & Technology, 2005, 39, 3946-3956.	4.6	494
59	Phenanthrene and Pyrene Sorption and Intraparticle Diffusion in Polyoxymethylene, Coke, and Activated Carbonâ€. Environmental Science & Technology, 2005, 39, 6516-6526.	4.6	102
60	Thermal Program Desorption Mass Spectrometry of PAHs from Mineral and Organic Surfaces. Environmental Engineering Science, 2004, 21, 647-660.	0.8	10
61	Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments:Â Physicochemical Tests. Environmental Science & Technology, 2004, 38, 5458-5464.	4.6	260
62	Effects of Particulate Carbonaceous Matter on the Bioavailability of Benzo[a]pyrene and 2,2â€~,5,5â€~-Tetrachlorobiphenyl to the Clam,Macoma balthica. Environmental Science & Technology, 2004, 38, 4549-4556.	4.6	82
63	PCB and PAH Speciation among Particle Types in Contaminated Harbor Sediments and Effects on PAH Bioavailability. Environmental Science & Technology, 2003, 37, 2209-2217.	4.6	267
64	PAH Sorption Mechanism and Partitioning Behavior in Lampblack-Impacted Soils from Former Oil-Gas Plant Sites. Environmental Science & Technology, 2003, 37, 3625-3634.	4.6	85
65	Peer Reviewed: Contaminant Bioavailability in Soil and Sediment. Environmental Science & Technology, 2003, 37, 295A-302A.	4.6	239
66	Particle-Scale Understanding of the Bioavailability of PAHs in Sediment. Environmental Science & Technology, 2002, 36, 477-483.	4.6	149
67	Microprobe laser mass spectrometry studies of polycyclic aromatic hydrocarbon distributions on harbor sediments and coals. Israel Journal of Chemistry, 2001, 41, 105-110.	1.0	5
68	Particle-Scale Investigation of PAH Desorption Kinetics and Thermodynamics from Sediment. Environmental Science & Technology, 2001, 35, 3468-3475.	4.6	171
69	Microscale detection of polychlorinated biphenyls using two-step laser mass spectrometry. International Journal of Mass Spectrometry, 2001, 212, 41-48.	0.7	8
70	Microscale Location, Characterization, and Association of Polycyclic Aromatic Hydrocarbons on Harbor Sediment Particles. Environmental Science & Technology, 2000, 34, 1729-1736.	4.6	271
71	Direct Observation of Polycyclic Aromatic Hydrocarbons on Geosorbents at the Subparticle Scale. Environmental Science & Technology, 1999, 33, 1185-1192.	4.6	41
72	Organic Phase Resistance to Dissolution of Polycyclic Aromatic Hydrocarbon Compounds. Environmental Science & Technology, 1999, 33, 235-242.	4.6	58

#	Article	IF	CITATIONS
73	Biodegradation kinetics of naphthalene in nonaqueous phase liquid-water mixed batch systems: Comparison of model predictions and experimental results. , 1998, 57, 356-366.		21
74	Mass Transfer and Bioavailability of PAH Compounds in Coal Tar NAPLâ^'Slurry Systems. 2. Experimental Evaluations. Environmental Science & Technology, 1997, 31, 2268-2276.	4.6	44
75	Mass Transfer and Bioavailability of PAH Compounds in Coal Tar NAPLâ^'Slurry Systems. 1. Model Development. Environmental Science & Technology, 1997, 31, 2260-2267.	4.6	58
76	Sequestration of Hydrophobic Organic Contaminants by Geosorbents. Environmental Science & Technology, 1997, 31, 3341-3347.	4.6	923
77	Chemical Characterization of Coal Tarâ^'Water Interfacial Films. Environmental Science & Technology, 1996, 30, 1014-1022.	4.6	51
78	Biodegradation of Naphthalene from Coal Tar and Heptamethylnonane in Mixed Batch Systems. Environmental Science & Technology, 1996, 30, 1282-1291.	4.6	98
79	Bioavailability of hydrophobic organic compounds from nonaqueousâ€phase liquids: The biodegradation of naphthalene from coal tar. Environmental Toxicology and Chemistry, 1996, 15, 1894-1900.	2.2	20
80	BIOAVAILABILITY OF HYDROPHOBIC ORGANIC COMPOUNDS FROM NONAQUEOUS-PHASE LIQUIDS: THE BIODEGRADATION OF NAPHTHALENE FROM COAL TAR. Environmental Toxicology and Chemistry, 1996, 15, 1894.	2.2	3
81	Surfactant Solubilization of Phenanthrene in Soil-Aqueous Systems and Its Effects on Biomineralization. Advances in Chemistry Series, 1995, , 339-361.	0.6	10
82	Concentration-Dependent Regimes in Sorption and Transport of a Nonionic Surfactant in Sand—Aqueous Systems. ACS Symposium Series, 1995, , 38-53.	0.5	3
83	Sorption and Transport Kinetics of a Nonionic Surfactant through an Aquifer Sediment. Environmental Science & Technology, 1995, 29, 1032-1042.	4.6	88
84	Experimental Data and Modeling for Surfactant Micelles, HOCs, and Soil. Journal of Environmental Engineering, ASCE, 1994, 120, 23-41.	0.7	40
85	Surfactant Solubilization of Organic Compounds in Soil/Aqueous Systems. Journal of Environmental Engineering, ASCE, 1994, 120, 5-22.	0.7	101
86	Semi-continuous evaporation model for leachate treatment process evaluation. Environmental Progress, 1994, 13, 278-289.	0.8	3
87	Semi-continuous evaporation model for leachate treatment process evaluation. Environmental Progress, 1994, 13, 278-289.	0.8	11
88	Distribution of Nonionic Surfactant and Phenanthrene in a Sediment/Aqueous System. Environmental Science & Technology, 1994, 28, 1550-1560.	4.6	175
89	Additions and Corrections: Interfacial Films in Coal Tar Nonaqueous-Phase Liquid-Water Systems. Environmental Science & Technology, 1994, 28, 756-756.	4.6	23
90	Interfacial films in coal tar nonaqueous-phase liquid-water systems. Environmental Science & Technology, 1993, 27, 2914-2918.	4.6	94

#	Article	IF	CITATIONS
91	Solubilization and Biodegradation of Hydrophobic Organic Compounds in Soil—Aqueous Systems with Nonionic Surfactants. ACS Symposium Series, 1992, , 159-168.	0.5	9
92	Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotechnology and Bioengineering, 1992, 40, 1367-1380.	1.7	199
93	Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environmental Science & Technology, 1991, 25, 1920-1930.	4.6	254
94	Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology, 1991, 25, 127-133.	4.6	692
95	Surfactant Solubilization of Polycyclic Aromatic Hydrocarbon Compounds in Soil-Water Suspensions. Water Science and Technology, 1991, 23, 475-485.	1.2	128
96	Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environmental Science & Technology, 1990, 24, 363-373.	4.6	309
97	Destruction of Iron-Complexed Cyanide by Alkaline Hydrolysis. Water Science and Technology, 1989, 21, 547-558.	1.2	10
98	Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon. Environmental Science & Technology, 1984, 18, 395-403.	4.6	163
99	ESTIMATING ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS ON SOILS. Soil Science, 1984, 137, 292-308.	0.9	114