List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11822601/publications.pdf Version: 2024-02-01

IIM XIANC

#	Article	IF	CITATIONS
1	The Energy Sensor AMPKα1 Is Critical in Rapamycin-Inhibition of mTORC1-S6K-Induced T-cell Memory. International Journal of Molecular Sciences, 2022, 23, 37.	4.1	7
2	Prosurvival IL-7–Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1–TCF1–Id3 and Metabolic AMPKα1–ULK1–ATG7 Pathways. Journal of Immunology, 2022, 208, I	155-168.	7
3	Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Î'-Catenin Pathway. International Journal of Molecular Sciences, 2022, 23, 5593.	4.1	8
4	Distinct roles but cooperative effect of TLR3/9 agonists and PD-1 blockade in converting the immunotolerant microenvironment of irreversible electroporation-ablated tumors. Cellular and Molecular Immunology, 2021, 18, 2632-2647.	10.5	17
5	Aptamer-Functionalized Nanoparticles in Targeted Delivery and Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 9123.	4.1	91
6	Aptamers, the Nucleic Acid Antibodies, in Cancer Therapy. International Journal of Molecular Sciences, 2020, 21, 2793.	4.1	89
7	TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasisÂ. Cellular and Molecular Immunology, 2019, 16, 820-832.	10.5	37
8	Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Scientific Reports, 2018, 8, 3769.	3.3	59
9	Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice. Vaccine, 2018, 36, 1414-1422.	3.8	19
10	An In Vitro Experimental Study of the Pulse Delivery Method in Irreversible Electroporation. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2018, 1, .	0.5	4
11	Novel EXO-T vaccine using polyclonal CD4 ⁺ T cells armed with HER2-specific exosomes for HER2-positive breast cancer. OncoTargets and Therapy, 2018, Volume 11, 7089-7093.	2.0	27
12	A Critical Role of FAK/Rhoa Signaling in Simulated Microgravity-Altered Cell Apoptosis, Proliferation and Metastasis. Journal of Cell Signaling, 2018, 03, .	0.3	1
13	Mannose-6-phosphate receptor: a novel regulator of T cell immunity. Cellular and Molecular Immunology, 2018, 15, 986-988.	10.5	16
14	Simulated Microgravity Reduces Focal Adhesions and Alters Cytoskeleton and Nuclear Positioning Leading to Enhanced Apoptosis via Suppressing FAK/RhoA-Mediated mTORC1/NF-κB and ERK1/2 Pathways. International Journal of Molecular Sciences, 2018, 19, 1994.	4.1	37
15	Multiple effects of CD40–CD40L axis in immunity against infection and cancer. ImmunoTargets and Therapy, 2018, Volume 7, 55-61.	5.8	50
16	Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway. Cellular and Molecular Immunology, 2017, 14, 529-545.	10.5	30
17	CD40 agonist converting CTL exhaustion via the activation of the mTORC1 pathway enhances PD-1 antagonist action in rescuing exhausted CTLs in chronic infection. Biochemical and Biophysical Research Communications, 2017, 484, 662-667.	2.1	6
18	mTORC1 regulates mannose-6-phosphate receptor transport and T-cell vulnerability to regulatory T cells by controlling kinesin KIF13A. Cell Discovery, 2017, 3, 17011.	6.7	17

#	Article	IF	CITATIONS
19	CD8 ⁺ memory T-cell inflation renders compromised CD4 ⁺ T-cell-dependent CD8 ⁺ T-cell immunity via naïve T-cell anergy. ImmunoTargets and Therapy, 2017, Volume 6, 39-49.	5.8	0
20	The Tat Protein Enhances CTL Responses and Therapeutic Immunity of Gag-Specific Exosome-Targeted T Cell-Based Gag/Tat-Texo Vaccine in Transgenic HLA-A2 Mice. World Journal of Vaccines, 2017, 07, 11-25.	0.8	0
21	Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NFâ€₽Bâ€Regulated Antiâ€Apoptosis and p53/PCNA―and ATM/ATRâ€Chk1/2â€Controlled Response Pathways. Journal of Cellular Biochemistry, 2016, 117, 2138-2148.	ḋDNA&€Đa	amage
22	Novel T-cell-based vaccines via arming polyclonal CD4 ⁺ T cells with antigen-specific exosomes. Immunotherapy, 2016, 8, 1265-1269.	2.0	4
23	IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia. Cell and Bioscience, 2016, 6, 30.	4.8	32
24	Enhanced Protective Immunity Derived from Dendritic Cells with Phagocytosis of CD40 Ligand Transgene-engineered Apoptotic Tumor Cells via Increased Dendritic Cell Maturation. Tumori, 2015, 101, 637-643.	1.1	5
25	Potent immunotherapy against wellâ€established thymoma using adoptively transferred transgene <i>ILâ€6</i> â€engineered dendritic cellâ€stimulated CD8 ⁺ Tâ€cells with prolonged survival and enhanced cytotoxicity. Journal of Gene Medicine, 2015, 17, 153-160.	2.8	6
26	Differential expression of mannose-6-phosphate receptor regulates T cell contraction. Journal of Leukocyte Biology, 2015, 98, 313-318.	3.3	22
27	HER2-directed therapy: current treatment options for HER2-positive breast cancer. Breast Cancer, 2015, 22, 101-116.	2.9	149
28	Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44+CD62Lhigh IL-7R+ CTLs with up- and downregulation of anti- and pro-apoptosis genes. Cellular and Molecular Immunology, 2015, 12, 456-465.	10.5	16
29	Innate and Adoptive Immune Cells Contribute to Natural Resistance to Systemic Metastasis of B16 Melanoma. Cancer Biotherapy and Radiopharmaceuticals, 2015, 30, 72-78.	1.0	5
30	Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation. International Journal of Molecular Sciences, 2014, 15, 5508-5521.	4.1	8
31	HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice. Trials in Vaccinology, 2014, 3, 19-25.	1.2	10
32	Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma. Biochemical and Biophysical Research Communications, 2013, 438, 152-155.	2.1	71
33	Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice. Breast Cancer Research and Treatment, 2013, 140, 273-284	2.5	37
34	Differential requirements of <scp>CD</scp> 4 ⁺ <scp>T</scp> â€cell signals for effector cytotoxic Tâ€lymphocyte (<scp>CTL</scp>) priming and functional memory <scp>CTL</scp> development at higher <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell precursor frequency. Immunology, 2013, 138, 298-306	4.4	10
35	A novel T cell-based vaccine capable of stimulating long-term functional CTL memory against B16 melanoma via CD40L signaling. Cellular and Molecular Immunology, 2013, 10, 72-77.	10.5	29
36	Enhanced therapeutic efficacy of adenovirus-mediated interleukin-24 gene therapy combined with ionizing radiotherapy for nasopharyngeal carcinoma. Oncology Reports, 2013, 30, 1165-1174.	2.6	5

#	Article	IF	CITATIONS
37	Th Cells Promote CTL Survival and Memory via Acquired pMHC-I and Endogenous IL-2 and CD40L Signaling and by Modulating Apoptosis-Controlling Pathways. PLoS ONE, 2013, 8, e64787.	2.5	13
38	A new dynamic model of three cell interactions for CTL responses. Oncolmmunology, 2012, 1, 1430-1432.	4.6	4
39	Novel CD8+ T cell-based vaccine stimulates Gp120-specific CTL responses leading to therapeutic and long-term immunity in transgenic HLA-A2 mice. Vaccine, 2012, 30, 3519-3525.	3.8	25
40	Direct in vivo evidence of CD4+ T cell requirement for CTL response and memory via pMHC-l targeting and CD40L signaling. Journal of Leukocyte Biology, 2012, 92, 289-300.	3.3	27
41	CD4+ Th2 cells function alike effector Tr1 and Th1 cells through the deletion of a single cytokine IL-6 and IL-10 gene. Molecular Immunology, 2012, 51, 143-149.	2.2	17
42	CD154 and IL-2 Signaling of CD4+ T Cells Play a Critical Role in Multiple Phases of CD8+ CTL Responses Following Adenovirus Vaccination. PLoS ONE, 2012, 7, e47004.	2.5	12
43	Synergistic Tumor Suppression by Adenovirus-Mediated Inhibitor of Growth 4 and Interleukin-24 Gene Cotransfer in Hepatocarcinoma Cells. Cancer Biotherapy and Radiopharmaceuticals, 2011, 26, 681-695.	1.0	22
44	GP120-specific exosome-targeted T cell-based vaccine capable of stimulating DC- and CD4+ T-independent CTL responses. Vaccine, 2011, 29, 3538-3547.	3.8	39
45	CD4+ T cell-released exosomes inhibit CD8+ cytotoxic T-lymphocyte responses and antitumor immunity. Cellular and Molecular Immunology, 2011, 8, 23-30.	10.5	97
46	Mechanisms of cellular communication through intercellular protein transfer. Journal of Cellular and Molecular Medicine, 2011, 15, 1458-1473.	3.6	128
47	A Distinct Role of CD4+ Th17- and Th17-Stimulated CD8+ CTL in the Pathogenesis of Type 1 Diabetes and Experimental Autoimmune Encephalomyelitis. Journal of Clinical Immunology, 2011, 31, 811-826.	3.8	30
48	Th17 and Th17-stimulated CD8+ T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunology, Immunotherapy, 2011, 60, 1473-1484.	4.2	81
49	Regulators of T ell memory generation: TCR signals versus CD4 ⁺ help?. Immunology and Cell Biology, 2011, 89, 578-580.	2.3	10
50	Membraneâ€bound HSP70â€engineered myeloma cellâ€derived exosomes stimulate more efficient CD8 ⁺ CTLâ€and NKâ€mediated antitumour immunity than exosomes released from heatâ€shocked tumour cells expressing cytoplasmic HSP70. Journal of Cellular and Molecular Medicine, 2010, 14, 2655-2666.	3.6	129
51	Tumor-derived HLA-G1 acquisition by monocytes through trogocytosis: possible functional consequences. Cellular and Molecular Life Sciences, 2010, 67, 4107-4108.	5.4	5
52	LFA-1 defect-induced effector/memory CD8+ T cell apoptosis is mediated via Bcl-2/Caspase pathways and associated with downregulation of CD27 and IL-15R. Molecular Immunology, 2010, 47, 2411-2421.	2.2	9
53	Optimal TLR9 signal converts tolerogenic CD4-8- DCs into immunogenic ones capable of stimulating antitumor immunity via activating CD4+ Th1/Th17 and NK cell responses. Journal of Leukocyte Biology, 2010, 88, 393-403.	3.3	20
54	Dendritic Cells Recruit T Cell Exosomes via Exosomal LFA-1 Leading to Inhibition of CD8+ CTL Responses through Downregulation of Peptide/MHC Class I and Fas Ligand-Mediated Cytotoxicity. Journal of Immunology, 2010, 185, 5268-5278.	0.8	106

#	Article	IF	CITATIONS
55	Tumor Necrosis Factor Gene-Engineered J558 Tumor Cell–Released Exosomes Stimulate Tumor Antigen P1A-Specific CD8 ⁺ CTL Responses and Antitumor Immunity. Cancer Biotherapy and Radiopharmaceuticals, 2010, 25, 21-28.	1.0	26
56	Tumor-Suppressive Effect of Adenovirus-Mediated Inhibitor of Growth 4 Gene Transfer in Breast Carcinoma Cells <i>In Vitro</i> and <i>In Vivo</i> . Cancer Biotherapy and Radiopharmaceuticals, 2010, 25, 427-437.	1.0	21
57	TheIn VitroandIn VivoAntitumor Activity of Adenovirus-Mediated Interleukin-24 Expression for Laryngocarcinoma. Cancer Biotherapy and Radiopharmaceuticals, 2010, 25, 29-38.	1.0	12
58	Recombinant Human Interleukin-24 Suppresses Gastric Carcinoma Cell Growth <i>In Vitro</i> and <i>In Vivo</i> . Cancer Investigation, 2010, 28, 85-93.	1.3	23
59	Adenovirus-Mediated ING4 Expression Suppresses Pancreatic Carcinoma Cell Growth via Induction of Cell-Cycle Alteration, Apoptosis, and Inhibition of Tumor Angiogenesis. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24, 261-269.	1.0	35
60	CD4+ Th-APC with Acquired Peptide/MHC Class I and II Complexes Stimulate Type 1 Helper CD4+ and Central Memory CD8+ T Cell Responses. Journal of Immunology, 2009, 182, 193-206.	0.8	53
61	Tumor Apoptotic Bodies Inhibit CTL Responses and Antitumor Immunity via Membrane-Bound Transforming Growth Factor.l²1 Inducing CD8+ T-Cell Anergy and CD4+ Tr1 Cell Responses. Cancer Research, 2009, 69, 7756-7766.	0.9	50
62	CD40 ligation converts TGF-Î ² -secreting tolerogenic CD4â´'8â´' dendritic cells into IL-12-secreting immunogenic ones. Biochemical and Biophysical Research Communications, 2009, 379, 954-958.	2.1	10
63	Defect of CD8+ Memory T Cells Developed in Absence of IL-12 Priming for Secondary Expansion. Cellular and Molecular Immunology, 2008, 5, 147-152.	10.5	11
64	Intercellular Trogocytosis Plays an Important Role in Modulation of Immune Responses. Cellular and Molecular Immunology, 2008, 5, 261-269.	10.5	102
65	Acquired pMHC I Complexes Greatly Enhance CD4+ Th Cell's Stimulatory Effect on CD8+ T Cell-Mediated Diabetes in Transgenic RIP-mOVA Mice. Cellular and Molecular Immunology, 2008, 5, 407-415.	10.5	10
66	Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Letters, 2008, 271, 105-116.	7.2	62
67	T cell precursor frequency differentially affects CTL responses under different immune conditions. Biochemical and Biophysical Research Communications, 2008, 367, 427-434.	2.1	6
68	Antigen Specificity Acquisition of Adoptive CD4+ Regulatory T Cells via Acquired Peptide-MHC Class I Complexes. Journal of Immunology, 2008, 181, 2428-2437.	0.8	17
69	Active CD4 ⁺ helper T cells directly stimulate CD8 ⁺ cytotoxic T lymphocyte responses in wild-type and MHC II gene knockout C57BL/6 mice and transgenic RIP-mOVA mice expressing islet β-cell ovalbumin antigen leading to diabetes. Autoimmunity, 2008, 41, 501-511.	2.6	9
70	Disrupted RabGAP Function of the p85 Subunit of Phosphatidylinositol 3-Kinase Results in Cell Transformation. Journal of Biological Chemistry, 2008, 283, 15861-15868.	3.4	37
71	Recombinant Human IL-24 Suppresses Lung Carcinoma Cell Growth via Induction of Cell Apoptosis and Inhibition of Tumor Angiogenesis. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 310-320.	1.0	26
72	TLR ligands efficiently convert tolerogenic CD4â€8―DC into immunogenic ones stimulating longâ€lasting antitumor immune response. FASEB Journal, 2008, 22, 1068.18.	0.5	0

#	Article	IF	CITATIONS
73	Novel Exosome-Targeted CD4+ T Cell Vaccine Counteracting CD4+25+ Regulatory T Cell-Mediated Immune Suppression and Stimulating Efficient Central Memory CD8+ CTL Responses. Journal of Immunology, 2007, 179, 2731-2740.	0.8	51
74	Adenovirus-Mediated Il-24 Expression Suppresses Hepatocellular Carcinoma Growth via Induction of Cell Apoptosis and Cycling Arrest and Reduction of Angiogenesis. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 56-63.	1.0	15
75	IL-10 Has A Distinct Immunoregulatory Effect on Naive and Active T Cell Subsets. Journal of Interferon and Cytokine Research, 2007, 27, 1031-1038.	1.2	36
76	Nonspecific CD4+ T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8+ CTL responses and long-term T cell memory. Journal of Leukocyte Biology, 2007, 82, 829-838.	3.3	51
77	Bidirectional membrane molecule transfer between dendritic and T cells. Biochemical and Biophysical Research Communications, 2007, 359, 202-208.	2.1	37
78	Alpha tumor necrosis factor contributes to CD8+ T cell survival in the transition phase. Biochemical and Biophysical Research Communications, 2007, 360, 702-707.	2.1	6
79	CD4+ T cell acquisition of the bystander pMHC I colocalizing in the same immunological synapse comprising pMHC II and costimulatory CD40, CD54, CD80, OX40L, and 41BBL. Biochemical and Biophysical Research Communications, 2007, 362, 822-828.	2.1	24
80	Review: Cancer Immunotherapy by Exosome-Based Vaccines. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 692-703.	1.0	54
81	CD4+Th1 cells promote CD8+Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology, 2007, 120, 148-159.	4.4	77
82	Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology, 2007, 120, 90-102.	4.4	200
83	Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T cell responses and antitumor immunity. Cellular and Molecular Immunology, 2007, 4, 105-11.	10.5	57
84	Type 1 CD8+ T cells are superior to type 2 CD8+ T cells in tumor immunotherapy due to their efficient cytotoxicity, prolonged survival and type 1 immune modulation. Cellular and Molecular Immunology, 2007, 4, 277-85.	10.5	18
85	Intradermal Vaccination of Dendritic Cell–Derived Exosomes Is Superior to a Subcutaneous One in the Induction of Antitumor Immunity. Cancer Biotherapy and Radiopharmaceuticals, 2006, 21, 146-154.	1.0	20
86	CD4+ T cell-independent maintenance and expansion of memory CD8+ T cells derived from in vitro dendritic cell activation. International Immunology, 2006, 18, 887-895.	4.0	6
87	Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Research, 2006, 16, 241-259.	12.0	35
88	CD4+ T cells stimulate memory CD8+ T cell expansion via acquired pMHC I complexes and costimulatory molecules, and IL-2 secretion. Journal of Leukocyte Biology, 2006, 80, 1354-1363.	3.3	27
89	In Vitro Activation of CD8 Interphotoreceptor Retinoid-Binding Protein-Specific T Cells Requires not only Antigenic Stimulation but also Exogenous Growth Factors. Journal of Immunology, 2006, 176, 5006-5014.	0.8	19
90	Conversion of Tolerogenic CD4Â ⁻ 8Â ⁻ Dendritic Cells to Immunogenic Ones Inducing Efficient Antitumor Immunity. Cancer Biotherapy and Radiopharmaceuticals, 2006, 21, 74-80.	1.0	3

#	Article	IF	CITATIONS
91	Oncolytic Adenovirus-Mediated E1A Gene Therapy Induces Tumor-Cell Apoptosis and Reduces Tumor Angiogenesis Leading to Inhibition of Hepatocellular Carcinoma Growth in Animal Model. Cancer Biotherapy and Radiopharmaceuticals, 2006, 21, 225-234.	1.0	14
92	CD8+ Cytotoxic T-APC Stimulate Central Memory CD8+ T Cell Responses via Acquired Peptide-MHC Class I Complexes and CD80 Costimulation, and IL-2 Secretion. Journal of Immunology, 2006, 177, 2976-2984.	0.8	39
93	Human Dendritic Cells Engineered to Express Alpha Tumor Necrosis Factor Maintain Cellular Maturation and T-Cell Stimulation Capacity. Cancer Biotherapy and Radiopharmaceuticals, 2006, 21, 613-622.	1.0	12
94	Dendritic cell-derived exosomes stimulate stronger CD8+ CTL responses and antitumor immunity than tumor cell-derived exosomes. Cellular and Molecular Immunology, 2006, 3, 205-11.	10.5	91
95	CD4â^'8â^' Dendritic Cells Prime CD4+ T Regulatory 1 Cells to Suppress Antitumor Immunity. Journal of Immunology, 2005, 175, 2931-2937.	0.8	61
96	Intratumoral administration of immature dendritic cells following the adenovirus vector encoding CD40 ligand elicits significant regression of established myeloma. Cancer Gene Therapy, 2005, 12, 122-132.	4.6	25
97	Combined radiation therapy and dendritic cell vaccine for treating solid tumors with liver micro-metastasis. Journal of Gene Medicine, 2005, 7, 506-517.	2.8	24
98	Fusion Hybrid of Dendritic Cells and Engineered Tumor Cells Expressing Interleukin-12 Induces Type 1 Immune Responses against Tumor. Tumori, 2005, 91, 531-538.	1.1	14
99	Adenovirus-mediated Transgene-engineered Dendritic Cell Vaccine of Cancer. Current Gene Therapy, 2005, 5, 237-247.	2.0	27
100	CD8α+, but Not CD8αâ^', Dendritic Cells Tolerize Th2 Responses via Contact-Dependent and -Independent Mechanisms, and Reverse Airway Hyperresponsiveness, Th2, and Eosinophil Responses in a Mouse Model of Asthma. Journal of Immunology, 2005, 175, 1516-1522.	0.8	43
101	Dendritic Cell/Myeloma Hybrid Vaccine. , 2005, 113, 225-234.		5
102	Molecular and Immunophenotypical Characterization of Progressive and Regressive Leukemia Cell Lines. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 290-299.	1.0	2
103	Vaccine of Engineered Tumor Cells Secreting Stromal Cell–Derived Factor-1 Induces T-Cell Dependent Antitumor Responses. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 401-409.	1.0	9
104	Significant Tumor Regression Induced by Microencapsulation of Recombinant Tumor Cells Secreting Fusion Protein. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 260-266.	1.0	8
105	A New Dynamic Model of CD8+ T Effector Cell Responses via CD4+ T Helper-Antigen-Presenting Cells. Journal of Immunology, 2005, 174, 7497-7505.	0.8	134
106	Tumor-Infiltrating Dendritic Cell Subsets of Progressive or Regressive Tumors Induce Suppressive or Protective Immune Responses. Cancer Research, 2005, 65, 4955-4962.	0.9	30
107	Engineered Fusion Hybrid Vaccine of IL-18 Gene-Modified Tumor Cells and Dendritic Cells Induces Enhanced Antitumor Immunity. Cancer Biotherapy and Radiopharmaceuticals, 2004, 19, 322-330.	1.0	32
108	Synergistic effect of lymphotactin and interferon ?-inducible protein-10 transgene expression in T-cell localization and adoptive T-cell therapy of tumors. International Journal of Cancer, 2004, 109, 817-825.	5.1	30

#	Article	IF	CITATIONS
109	Combined alpha tumor necrosis factor gene therapy and engineered dendritic cell vaccine in combating well-established tumors. Journal of Gene Medicine, 2004, 6, 857-868.	2.8	16
110	Enhanced antitumor immunity derived from a novel vaccine of fusion hybrid between dendritic and engineered myeloma cells. Experimental Oncology, 2004, 26, 300-6.	0.1	22
111	Genetic Engineering of a Recombinant Fusion Protein Possessing an Antitumor Antibody Fragment and a TNF-α Moiety. , 2003, 215, 201-212.		1
112	Dendritic cells engineered to express the Flt3 ligand stimulate type I immune response, and induce enhanced cytoxic T and natural killer cell cytotoxicities and antitumor immunity. Journal of Gene Medicine, 2003, 5, 668-680.	2.8	20
113	Tumour necrosis factor-alpha (TNF-alpha) transgene-expressing dendritic cells (DCs) undergo augmented cellular maturation and induce more robust T-cell activation and anti-tumour immunity than DCs generated in recombinant TNF-alpha. Immunology, 2003, 108, 177-188.	4.4	54
114	CpG-Containing Oligodeoxynucleotide 1826 Converts the Weak Uveitogenic Rat Interphotoreceptor Retinoid-Binding Protein Peptide 1181–1191 into a Strong Uveitogen. Journal of Immunology, 2003, 171, 4780-4785.	0.8	18
115	Genetic Engineering of Dendritic Cells by Adenovirus-Mediated TNF-α Gene Transfer. , 2003, 215, 213-226.		1
116	Analysis of the Gene Expression Profiles of Immature versus Mature Bone Marrow-Derived Dendritic Cells Using DNA Arrays. Biochemical and Biophysical Research Communications, 2002, 290, 66-72.	2.1	56
117	Advances in Dendritic Cell-Based Vaccine of Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2002, 17, 601-619.	1.0	28
118	Antitumor Immune Responses Derived from Transgenic Expression of CD40 Ligand in Myeloma Cells. Cancer Biotherapy and Radiopharmaceuticals, 2002, 17, 11-18.	1.0	12
119	DNA microarray analysis of the gene expression profiles of naıÌ^ve versus activated tumor-specific T cells. Life Sciences, 2002, 71, 3005-3017.	4.3	31
120	Synergistic effect of adoptive T-cell therapy and intratumoral interferon Î ³ -inducible protein-10 transgene expression in treatment of established tumors. Cellular Immunology, 2002, 217, 12-22.	3.0	34
121	Adenovirus-mediated CD40 ligand gene-engineered dendritic cells elicit enhanced CD8+ cytotoxic T-cell activation and antitumor immunity. Cancer Gene Therapy, 2002, 9, 202-208.	4.6	44
122	Intratumoral coinjection of two adenoviral vectors expressing functional interleukin-18 and inducible protein-10, respectively, synergizes to facilitate regression of established tumors. Cancer Gene Therapy, 2002, 9, 533-542.	4.6	40
123	Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Therapy, 2002, 9, 778-786.	4.6	33
124	Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leukemia Research, 2002, 26, 757-763.	0.8	59
125	Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Research, 2002, 62, 2043-51.	0.9	48
126	Neutrophils and B Cells Express XCR1 Receptor and Chemotactically Respond to Lymphotactin. Biochemical and Biophysical Research Communications, 2001, 281, 378-382.	2.1	56

#	Article	IF	CITATIONS
127	Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. International Journal of Cancer, 2001, 93, 539-548.	5.1	151
128	DNA Array and Biological Characterization of the Impact of the Maturation Status of Mouse Dendritic Cells on Their Phenotype and Antitumor Vaccination Efficacy. Cellular Immunology, 2001, 214, 60-71.	3.0	39
129	Regression of engineered myeloma cells secreting interferon-Î ³ -inducing factor is mediated by both CD4+/CD8+ T and natural killer cells. Leukemia Research, 2001, 25, 909-915.	0.8	18
130	Lymphotactin Expression by Engineered Myeloma Cells Drives Tumor Regression: Mediation by CD4+ and CD8+ T Cells and Neutrophils Expressing XCR1 Receptor. Journal of Immunology, 2001, 167, 57-65.	0.8	64
131	Adenoviral transfer of xenogeneic MHC class I gene results in loss of tumorigenicity and inhibition of tumor growth. Cancer Gene Therapy, 2000, 7, 37-44.	4.6	4
132	Combinational immunotherapy for established tumors with engineered tumor vaccines and adenovirus-mediated gene transfer. Cancer Gene Therapy, 2000, 7, 1023-1033.	4.6	18
133	Adenovirus-mediated p16INK4 gene transfer significantly suppresses human breast cancer growth. Cancer Gene Therapy, 2000, 7, 1270-1278.	4.6	21
134	Regression of Engineered Tumor Cells Secreting Cytokines Is Related to a Shift in Host Cytokine Profile from Type 2 to Type 1. Journal of Interferon and Cytokine Research, 2000, 20, 349-354.	1.2	27
135	Study of B72.3 combining sites by molecular modeling and site-directed mutagenesis. Protein Engineering, Design and Selection, 2000, 13, 339-344.	2.1	0
136	The Spectrum of Neuroendocrine Differentiation Among Gastrointestinal Carcinoids. Archives of Pathology and Laboratory Medicine, 2000, 124, 570-576.	2.5	53
137	Targeting cytokines to tumors to induce active antitumor immune responses by recombinant fusion proteins. Human Antibodies, 1999, 9, 23-36.	1.5	10
138	Light-chain framework region residue Tyr71 of chimeric B72.3 antibody plays an important role in influencing the TAG72 antigen binding. Protein Engineering, Design and Selection, 1999, 12, 417-421.	2.1	7
139	Substitution of Surface-Exposed Framework Residues Alters Secretion of Recombinant Fusion Protein Fv/Tumor Necrosis Factor in Escherichia coli. IUBMB Life, 1999, 48, 327-332.	3.4	3
140	Enzyme-linked immunosorbent assay-based selection and optimization of elution buffer for TAG72-affinity chromatography. Biomedical Applications, 1999, 731, 299-308.	1.7	5
141	Substitution of Surfaceâ€Exposed Framework Residues Alters Secretion of Recombinant Fusion Protein Fv/Tumor Necrosis Factor in Escherichia coli. IUBMB Life, 1999, 48, 327-332.	3.4	3
142	Adenovirus-mediated TNF-α Gene Transfer induces Significant Tumor Regression in Mice. Cancer Biotherapy and Radiopharmaceuticals, 1999, 14, 49-57.	1.0	34
143	One Hundred Seventy-Fold Increase in Excretion of an FV Fragment-Tumor Necrosis Factor Alpha Fusion Protein (sFV/TNF-1±) from <i>Escherichia coli</i> Caused by the Synergistic Effects of Glycine and Triton X-100. Applied and Environmental Microbiology, 1998, 64, 2869-2874.	3.1	71
144	Antitumor Vaccination with Gene-Transduced Tumor Cells Expressing a Fusion Protein RM4/IFN-Ï". Cancer Biotherapy and Radiopharmaceuticals, 1997, 12, 123-130.	1.0	1

#	Article	IF	CITATIONS
145	Genetic engineering of a recombinant fusion possessing anti-tumor F(ab′)2 and tumor necrosis factor. Journal of Biotechnology, 1997, 53, 3-12.	3.8	21
146	Characterization of anti-tumor immunity derived from the inoculation of myeloma cells secreting the fusion protein RM4/IFN-Ï". Human Antibodies, 1996, 7, 21-26.	1.5	8
147	Targeting gamma interferon to tumor cells by a genetically engineered fusion protein secreted from myeloma cells. Human Antibodies, 1996, 7, 2-10.	1.5	7
148	Identification of a decapeptide with the binding reactivity for tumor-associated TAG72 antigen from a phage displayed library. , 1996, 24, 352-358.		9
149	Radioimmunoscintigraphy of Gastric Adenocarcinomas with 99mTc-Chimeric ccM4 Antibody. Cancer Biotherapy and Radiopharmaceuticals, 1996, 11, 125-131.	1.0	0
150	Mouse Myeloma Cell Line Secreting Bifunctional Fusion Protein RM4/IFN-Ï,, Elicits Antitumor CD8 MHC Class I-Restricted T Cells That Are Cytolytic <i>In Vitro</i> and Tumoricidal <i>In Vivo</i> . Journal of Interferon and Cytokine Research, 1996, 16, 771-776.	1.2	9
151	Complementarity determining region residues aspartic acid at H55, serine at H95 and tyrosines at H97 and L96 play important roles in the B72.3 antibody–TAG72 antigen interaction. Protein Engineering, Design and Selection, 1996, 9, 539-543.	2.1	8
152	A genetically engineered single-gene-encoded anti-TAG72 chimeric antibody secreted from myeloma cells. Human Antibodies, 1995, 6, 161-166.	1.5	0
153	Expression of tumor-associated polymorphic epithelial mucin and carcinoembryonic antigen in gastrointestinal carcinoid tumors. Implications for immunodiagnosis and immunotherapy. Cancer, 1995, 75, 2836-2843.	4.1	11
154	Immunolocalization of hepatic metastases of human colonic cancer by chimeric anti-TAG72 antibody in scid mice. Journal of Surgical Oncology, 1995, 59, 3-9.	1.7	7
155	A genetically engineered single-chain FVTNF molecule possesses the anti-tumor immunoreactivity of FV as well as the cytotoxic activity of tumor necrosis factor. Molecular Immunology, 1995, 32, 873-881.	2.2	29
156	Framework Residues 71 and 93 of the Chimeric B72.3 Antibody are Major Determinants of the Conformation of Heavy-chain Hypervariable Loops. Journal of Molecular Biology, 1995, 253, 385-390.	4.2	33
157	Antibody-targeted lymphokine-activated killer cells inhibit liver micrometastases in severe combined immunodeficient mice. Gastroenterology, 1995, 109, 1950-1957.	1.3	7
158	Cloning and Expression of Functional cDNA Genes of a Mouse/Human Chimeric Antibody rcM4. Tumori, 1994, 80, 473-479.	1.1	2
159	Singleâ€chain antibody variable regionâ€ŧargeted interleukinâ€2 stimulates T cell killing of human colorectal carcinoma cells. Immunology and Cell Biology, 1994, 72, 275-285.	2.3	9
160	Differences in antigenâ€binding affinity caused by single amino acid substitution in the variable region of the heavy chain. Immunology and Cell Biology, 1993, 71, 239-247.	2.3	7
161	High-affinity chimeric anti-(colorectal carcinoma) antibody correlated to enhanced tumor targeting in biodistribution and imaging. Journal of Cancer Research and Clinical Oncology, 1993, 120, 57-62.	2.5	3
162	Recombinant Bifunctional Molecule FV/IFN-Î ³ Possesses the Anti-Tumor FV as Well as the Gamma Interferon Activities. Cancer Biotherapy, 1993, 8, 327-337.	0.5	9

#	Article	IF	CITATIONS
163	The Tyrosine Residue at Position 97 in the V _H CDR3 Region of a Mouse/Human Chimeric Anti-Colorectal Carcinoma Antibody Contributes Hydrogen Bonding to the TAG72 Antigen. Cancer Biotherapy, 1993, 8, 253-262.	0.5	1
164	High Binding Affinity Chimeric Anti-Colorectal Carcinoma Antibody Correlated to Enhanced Tumor Binding and Effector Function. Cancer Biotherapy, 1993, 8, 171-180.	0.5	2
165	Production and Characterization of a Tumor-Specific Monoclonal Antibody Act19 Recognizing an Epitope Distinctive from Sialosyl-Tn on the TAG72 Antigen. Tumori, 1993, 79, 58-65.	1.1	7
166	Adenovirus-mediated CD40 ligand gene-engineered dendritic cells elicit enhanced CD8+ cytotoxic T-cell activation and antitumor immunity. , 0, .		1