
Iftak Hussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1182188/publications.pdf Version: 2024-02-01

IFTAK HUSSAIN

#	Article	IF	CITATIONS
1	Label-free biodetection using a smartphone. Lab on A Chip, 2013, 13, 2124.	6.0	281
2	Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water. Analytical Chemistry, 2017, 89, 767-775.	6.5	99
3	Recent trends in smartphone-based detection for biomedical applications: a review. Analytical and Bioanalytical Chemistry, 2021, 413, 2389-2406.	3.7	93
4	Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Advances, 2016, 6, 21871-21880.	3.6	92
5	Water salinity detection using a smartphone. Sensors and Actuators B: Chemical, 2017, 239, 1042-1050.	7.8	74
6	Water turbidity sensing using a smartphone. RSC Advances, 2016, 6, 22374-22382.	3.6	73
7	Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Advances, 2015, 5,	1.3	54
8	Evanescent Wave Coupled Spectroscopic Sensing Using Smartphone. IEEE Photonics Technology Letters, 2014, 26, 568-570.	2.5	52
9	Smartphone-based optical spectroscopic platforms for biomedical applications: a review [Invited]. Biomedical Optics Express, 2021, 12, 1974.	2.9	38
10	Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique. Journal of Biophotonics, 2017, 10, 623-633.	2.3	37
11	All fiberâ€optic sensor for liquid level measurement. Microwave and Optical Technology Letters, 2008, 50, 1982-1984.	1.4	33
12	Dye-Assisted pH Sensing Using a Smartphone. IEEE Photonics Technology Letters, 2015, 27, 2363-2366.	2.5	32
13	Estimation of trace-mercury concentration in water using a smartphone. Measurement: Journal of the International Measurement Confederation, 2020, 154, 107507.	5.0	26
14	Surface Plasmon Resonance-Based Protein Bio-Sensing Using a Kretschmann Configured Double Prism Arrangement. IEEE Sensors Journal, 2015, 15, 6791-6796.	4.7	25
15	Design of a Smartphone Platform Compact Optical System Operational Both in Visible and Near Infrared Spectral Regime. IEEE Sensors Journal, 2018, 18, 4933-4939.	4.7	25
16	A naturally occurring diatom frustule as a SERS substrate for the detection and quantification of chemicals. Journal Physics D: Applied Physics, 2017, 50, 175103.	2.8	22
17	Turbidimetric analysis of growth kinetics of bacteria in the laboratory environment using smartphone. Journal of Biophotonics, 2020, 13, e201960159.	2.3	16
18	Wide-field multi-modal microscopic imaging using smartphone. Optics and Lasers in Engineering, 2021, 137, 106343.	3.8	14

IFTAK HUSSAIN

#	Article	IF	CITATIONS
19	Detection and quantification of phosphate in water and soil using a smartphone. Microchemical Journal, 2022, 172, 106949.	4.5	14
20	Synergy of Adsorption and Plasmonic Photocatalysis in the Au–CeO ₂ Nanosystem: Experimental Validation and Plasmonic Modeling. Langmuir, 2022, 38, 7628-7638.	3.5	14
21	Smartphone-based platform optical setup measuring π/256 optical phase difference in an interference process. Applied Optics, 2015, 54, 5739.	2.1	13
22	Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins. PLoS ONE, 2021, 16, e0258645.	2.5	13
23	Enhanced sensitive fiberâ€optic sensor with double pass evanescent field absorption. Microwave and Optical Technology Letters, 2009, 51, 3004-3006.	1.4	12
24	Periodically Varying Height in Metal Nano-pillars for Enhanced Generation of Localized Surface Plasmon Field. Plasmonics, 2015, 10, 1367-1372.	3.4	12
25	Carbon Nanodot–Neutral Red-Based Photometric and Fluorescence Sensing for Trace Detection of Nitrite in Water and Soil Using Smartphone. ACS Applied Nano Materials, 2022, 5, 3265-3274.	5.0	11
26	All Fiber-Optic Sensor for Monitoring Pressure Fluctuations in ON/OFF State. IEEE Sensors Journal, 2013, 13, 1148-1152.	4.7	10
27	Fiber-Optic Volumetric Sensor Based on Beer-Lambert Principle. IEEE Sensors Journal, 2013, 13, 3345-3346.	4.7	8
28	Diagonally Aligned Squared Metal Nano-pillar with Increased Hotspot Density as a Highly Reproducible SERS Substrate. Plasmonics, 2017, 12, 1353-1358.	3.4	7
29	Design of a 3D printed compact interferometric system and required phone application for small angular measurements. Review of Scientific Instruments, 2018, 89, 103111.	1.3	7
30	Programmable illumination smartphone microscopy (PISM): A multimodal imaging platform for biomedical applications. Optics and Lasers in Engineering, 2022, 151, 106931.	3.8	7
31	Solvent treated paper resistor for filter circuit operation and relative humidity sensing. Indian Journal of Physics, 2014, 88, 1093-1097.	1.8	6
32	An affordable, handheld multimodal microscopic system with onboard cell morphology and counting features on a mobile device. Analyst, The, 2022, 147, 2859-2869.	3.5	6
33	Fiber-optic liquid level sensor based on coupling optical path length variation. Review of Scientific Instruments, 2012, 83, 055006.	1.3	5
34	Smartphone-Based Spectrometric Analyzer for Accurate Estimation of pH Value in Soil. IEEE Sensors Journal, 2020, , 1-1.	4.7	5
35	Non-intrusive refractometer sensor. Pramana - Journal of Physics, 2010, 74, 661-668.	1.8	4
36	Dual Mode Smartphone Based Sensing for Accurate Estimation of Sulphate and Chloride in Water. IEEE Sensors Journal, 2021, 21, 19314-19321.	4.7	4

IFTAK HUSSAIN

#	Article	IF	CITATIONS
37	A smartphone-based photometric and fluorescence sensing for accurate estimation of zinc ion in water. Sensors and Actuators A: Physical, 2022, 341, 113586.	4.1	3
38	A multi-channel smartphone-based spectroscopic system for high-throughput biosensing in low-resource settings. Analyst, The, O, , .	3.5	3
39	Single-mode fibre coupler as refractometer sensor. Pramana - Journal of Physics, 2012, 79, 1525-1532.	1.8	2
40	Low-Cost, Volume-Controlled Dipstick Urinalysis for Home-Testing. Journal of Visualized Experiments, 2021, , .	0.3	2
41	Recurrence monitoring for ovarian cancer using a cell phone-integrated paper device to measure the ovarian cancer biomarker HE4/CRE ratio in urine. Scientific Reports, 2021, 11, 21945.	3.3	2
42	Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix. Scientific Reports, 2022, 12, .	3.3	2