Nur Ain Asyiqin Anas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11821878/publications.pdf

Version: 2024-02-01

840776 1125743 13 401 11 13 citations h-index g-index papers 13 13 13 324 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors, 2019, 19, 3850.	3.8	76
2	Development of a Graphene-Based Surface Plasmon Resonance Optical Sensor Chip for Potential Biomedical Application. Materials, 2019, 12, 1928.	2.9	62
3	Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film. Optik, 2019, 178, 802-812.	2.9	47
4	Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection. Molecules, 2020, 25, 2548.	3.8	46
5	Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Optics and Laser Technology, 2019, 120, 105724.	4.6	40
6	Enhancing the sensitivity of a surface plasmon resonance-based optical sensor for zinc ion detection by the modification of a gold thin film. RSC Advances, 2019, 9, 41729-41736.	3.6	26
7	Investigating the Properties of Cetyltrimethylammonium Bromide/Hydroxylated Graphene Quantum Dots Thin Film for Potential Optical Detection of Heavy Metal Ions. Materials, 2020, 13, 2591.	2.9	24
8	Highly sensitive surface plasmon resonance optical detection of ferric ion using CTAB/hydroxylated graphene quantum dots thin film. Journal of Applied Physics, 2020, 128, 083105.	2.5	22
9	Glucose detection by gold modified carboxyl-functionalized graphene quantum dots-based surface plasmon resonance. Optik, 2021, 239, 166779.	2.9	15
10	Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application. Crystals, 2020, 10, 875.	2.2	14
11	Detection of mercury ion using surface plasmon resonance spectroscopy based on nanocrystalline cellulose/poly(3,4-ethylenedioxythiophene) thin film. Measurement: Journal of the International Measurement Confederation, 2021, 182, 109728.	5.0	13
12	Surface refractive index sensor based on titanium dioxide composite thin film for detection of cadmium ions. Measurement: Journal of the International Measurement Confederation, 2022, 187, 110287.	5.0	12
13	Exploration on Structural and Optical Properties of Nanocrystalline Cellulose/Poly(3,4-Ethylenedioxythiophene) Thin Film for Potential Plasmonic Sensing Application. Photonics, 2021, 8, 419.	2.0	4