List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11820918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of Nuclear Receptor 5A1 Induces and Maintains an Intermediate State of Conversion between Primed and Naive Pluripotency. Stem Cell Reports, 2020, 14, 506-519.	2.3	11
2	Isolation and characterization of ventricular-like cells derived from NKX2-5 and MLC2v double knock-in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 1278-1284.	1.0	9
3	A Synthetic Hybrid Molecule for the Selective Removal of Human Pluripotent Stem Cells from Cell Mixtures. Angewandte Chemie, 2017, 129, 1791-1796.	1.6	1
4	A Synthetic Hybrid Molecule for the Selective Removal of Human Pluripotent Stem Cells from Cell Mixtures. Angewandte Chemie - International Edition, 2017, 56, 1765-1770.	7.2	11
5	Efficient Adhesion Culture of Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Scientific Reports, 2017, 7, 41165.	1.6	50
6	Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials, 2017, 124, 47-54.	5.7	40
7	Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Scientific Reports, 2017, 7, 43210.	1.6	35
8	Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium. Stem Cell Reports, 2017, 9, 1546-1559.	2.3	107
9	PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice. Molecular and Cellular Biology, 2017, 37, .	1.1	11
10	Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers. Stem Cells International, 2016, 2016, 1-9.	1.2	12
11	BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer's disease models. Scientific Reports, 2016, 6, 33427.	1.6	22
12	The modeling of Alzheimer's disease by the overexpression of mutant Presenilin 1 in human embryonic stem cells. Biochemical and Biophysical Research Communications, 2016, 469, 587-592.	1.0	14
13	Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses. Stem Cell Research, 2015, 15, 459-468.	0.3	13
14	Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials, 2014, 35, 6259-6267.	5.7	54
15	A 3D Sphere Culture System Containing Functional Polymers for Large-Scale Human Pluripotent Stem Cell Production. Stem Cell Reports, 2014, 2, 734-745.	2.3	114
16	Optimization of slow cooling cryopreservation for human pluripotent stem cells. Genesis, 2014, 52, 49-55.	0.8	11
17	A Chemical Probe that Labels Human Pluripotent Stem Cells. Cell Reports, 2014, 6, 1165-1174.	2.9	42
18	Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Scientific Reports, 2014, 4, 4488.	1.6	70

#	Article	IF	CITATIONS
19	Role of retinoic acid and fibroblast growth factor 2 in neural differentiation from cynomolgus monkey (Macaca fascicularis) embryonic stem cells. Comparative Medicine, 2014, 64, 140-7.	0.4	8
20	Multidisciplinary research of human pluripotent stem cells for application to cell therapy and drug discovery. Tissue Engineering and Regenerative Medicine, 2013, 10, 160-163.	1.6	1
21	Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. European Heart Journal, 2013, 34, 1147-1156.	1.0	72
22	Identification of small molecules that promote human embryonic stem cell self-renewal. Biochemical and Biophysical Research Communications, 2013, 434, 710-716.	1.0	18
23	Identification of Chemicals Inducing Cardiomyocyte Proliferation in Developmental Stage–Specific Manner With Pluripotent Stem Cells. Circulation: Cardiovascular Genetics, 2013, 6, 624-633.	5.1	44
24	Wnt Signaling Orchestration with a Small Molecule DYRK Inhibitor Provides Long-Term Xeno-Free Human Pluripotent Cell Expansion. Stem Cells Translational Medicine, 2012, 1, 18-28.	1.6	51
25	Efficient and Accurate Homologous Recombination in hESCs and hiPSCs Using Helper-dependent Adenoviral Vectors. Molecular Therapy, 2012, 20, 424-431.	3.7	47
26	Comparative Study of Transplantation of Hepatocytes at Various Differentiation Stages into Mice with Lethal Liver Damage. Cell Transplantation, 2012, 21, 2351-2362.	1.2	11
27	A Small Molecule that Promotes Cardiac Differentiation of Human Pluripotent Stem Cells under Defined, Cytokine- and Xeno-free Conditions. Cell Reports, 2012, 2, 1448-1460.	2.9	234
28	Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature Communications, 2012, 3, 1236.	5.8	303
29	The SMAD2/3 corepressor SNON maintains pluripotency through selective repression of mesendodermal genes in human ES cells. Genes and Development, 2012, 26, 2471-2476.	2.7	25
30	Amyotrophic Lateral Sclerosis Model Derived from Human Embryonic Stem Cells Overexpressing Mutant Superoxide Dismutase 1. Stem Cells Translational Medicine, 2012, 1, 396-402.	1.6	24
31	Dynamic Link between Histone H3 Acetylation and an Increase in the Functional Characteristics of Human ESC/iPSC-Derived Cardiomyocytes. PLoS ONE, 2012, 7, e45010.	1.1	16
32	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
33	MITOPLD Is a Mitochondrial Protein Essential for Nuage Formation and piRNA Biogenesis in the Mouse Germline. Developmental Cell, 2011, 20, 364-375.	3.1	250
34	Alpha-fetoprotein-producing pancreatic cancer cells possess cancer stem cell characteristics. Cancer Letters, 2011, 308, 152-161.	3.2	20
35	Efficient Integration of Transgenes and Their Reliable Expression in Human Embryonic Stem Cells. , 2011, , .		0
36	Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression. PLoS ONE, 2011, 6, e23657.	1.1	272

#	Article	IF	CITATIONS
37	Simple and Highly Efficient Method for Production of Endothelial Cells from Human Embryonic Stem Cells. Cell Transplantation, 2011, 20, 1423-1430.	1.2	30
38	Redefining the Concept of Standardization for Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2011, 7, 221-226.	5.6	13
39	Tissue-specific demethylation in CpG-poor promoters during cellular differentiation. Human Molecular Genetics, 2011, 20, 2710-2721.	1.4	66
40	<i>Tudor domain containing 7</i> (<i>Tdrd7</i>) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10579-10584.	3.3	126
41	Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A. PLoS ONE, 2011, 6, e16734.	1.1	116
42	Combination of Functional Cardiomyocytes Derived from Human Stem Cells and a Highly-Efficient Microelectrode Array System: An Ideal Hybrid Model Assay for Drug Development. Current Stem Cell Research and Therapy, 2010, 5, 227-232.	0.6	48
43	Induction of Corneal Epithelium–Like Cells From Cynomolgus Monkey Embryonic Stem Cells and Their Experimental Transplantation to Damaged Cornea. Cornea, 2010, 29, 432-438.	0.9	27
44	In vitro hepatic maturation of human embryonic stem cells by using a mesenchymal cell line derived from murine fetal livers. Cell and Tissue Research, 2010, 339, 505-512.	1.5	23
45	Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs. Stem Cell Research, 2010, 4, 201-213.	0.3	108
46	Role of <i>SOX2</i> in maintaining pluripotency of human embryonic stem cells. Genes To Cells, 2010, 15, 455-470.	0.5	120
47	Cardiomyocytes develop from anterior primitive streak cells induced by β atenin activation and the blockage of BMP signaling in hESCs. Genes To Cells, 2010, 15, 1216-1227.	0.5	13
48	Efficient integration of transgenes into a defined locus in human embryonic stem cells. Nucleic Acids Research, 2010, 38, e96-e96.	6.5	40
49	MVH in piRNA processing and gene silencing of retrotransposons. Genes and Development, 2010, 24, 887-892.	2.7	219
50	Alpha-fetoprotein producing cells act as cancer progenitor cells in human cholangiocarcinoma. Cancer Letters, 2010, 294, 25-34.	3.2	33
51	SDF1/CXCR4 contributes to neural regeneration in hemiplegic mice with a monkey ES-cell-derived neural graft. Inflammation and Regeneration, 2010, 30, 193-205.	1.5	6
52	In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells. PLoS ONE, 2009, 4, e5338.	1.1	61
53	Highly Efficient Differentiation and Enrichment of Spinal Motor Neurons Derived from Human and Monkey Embryonic Stem Cells. PLoS ONE, 2009, 4, e6722.	1.1	94
54	Phenotypic Plasticity of Mouse Spermatogonial Stem Cells. PLoS ONE, 2009, 4, e7909.	1.1	85

#	Article	IF	CITATIONS
55	Abnormal DNA Methyltransferase Expression in Mouse Germline Stem Cells Results in Spermatogenic Defects1. Biology of Reproduction, 2009, 81, 155-164.	1.2	72
56	Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development (Cambridge), 2009, 136, 4011-4020.	1.2	111
57	Establishment of a Cell Line Derived from a Mouse Fetal Liver That Has the Characteristic to Promote the Hepatic Maturation of Mouse Embryonic Stem Cells by a Coculture Method. Tissue Engineering - Part A, 2009, 15, 3847-3856.	1.6	15
58	Adipogenic differentiation of human induced pluripotent stem cells: Comparison with that of human embryonic stem cells. FEBS Letters, 2009, 583, 1029-1033.	1.3	140
59	Target chromosomes of inducible deletion by a Cre/inverted loxP system in mouse embryonic stem cells. Chromosome Research, 2009, 17, 443-450.	1.0	11
60	Associations between PIWI proteins and TDRD1/MTRâ€1 are critical for integrated subcellular localization in murine male germ cells. Genes To Cells, 2009, 14, 1155-1165.	0.5	58
61	The TDRD9-MIWI2 Complex Is Essential for piRNA-Mediated Retrotransposon Silencing in the Mouse Male Germline. Developmental Cell, 2009, 17, 775-787.	3.1	297
62	Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochemical and Biophysical Research Communications, 2009, 388, 711-717.	1.0	46
63	Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: Germinal granules in mammals∆. Molecular and Cellular Endocrinology, 2009, 306, 17-23.	1.6	122
64	Genetic modification of primate embryonic stem cells. Human Cell, 2008, 17, 219-222.	1.2	0
65	HLA-haplotype banking and iPS cells. Nature Biotechnology, 2008, 26, 739-740.	9.4	292
66	Rapid Induction of Large Chromosomal Deletions by a Cre/Inverted loxP System in Mouse ES Cell Hybrids. Journal of Molecular Biology, 2008, 378, 328-336.	2.0	12
67	Homing of Mouse Spermatogonial Stem Cells to Germline Niche Depends on β1-Integrin. Cell Stem Cell, 2008, 3, 533-542.	5.2	170
68	PRDM14 suppresses expression of differentiation marker genes in human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 367, 899-905.	1.0	89
69	Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochemical and Biophysical Research Communications, 2008, 375, 27-32.	1.0	187
70	Long-Term Culture of Male Germline Stem Cells From Hamster Testes1. Biology of Reproduction, 2008, 78, 611-617.	1.2	165
71	Production of Transgenic Rats via Lentiviral Transduction and Xenogeneic Transplantation of Spermatogonial Stem Cells1. Biology of Reproduction, 2008, 79, 1121-1128.	1.2	36
72	Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/β-catenin, Activin/Nodal and BMP signaling. Development (Cambridge), 2008, 135, 2969-2979.	1.2	287

#	Article	IF	CITATIONS
73	Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13781-13786.	3.3	111
74	Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells. American Journal of Physiology - Renal Physiology, 2008, 295, G313-G321.	1.6	72
75	Study on Human Embryonic Stem Cells and IPS Stem Cells. The Journal of the Japanese Society of Internal Medicine, 2008, 97, 1341-1347.	0.0	0
76	Pathway for Differentiation of Human Embryonic Stem Cells to Vascular Cell Components and Their Potential for Vascular Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2127-2134.	1.1	136
77	Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: Domain composition, intracellular localization, and function in male germ cells in mice. Developmental Biology, 2007, 301, 38-52.	0.9	139
78	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	6.0	104
79	Efficient Multicistronic Expression of a Transgene in Human Embryonic Stem Cells. Stem Cells, 2007, 25, 1707-1712.	1.4	71
80	Transplantation of Embryonic Stem Cell-Derived Endodermal Cells into Mice with Induced Lethal Liver Damage. Stem Cells, 2007, 25, 3252-3260.	1.4	54
81	Genetically Manipulated Human Embryonic Stem Cell-Derived Dendritic Cells with Immune Regulatory Function. Stem Cells, 2007, 25, 2720-2729.	1.4	63
82	Irrational Japanese regulations hinder human embryonic stem cell research. Nature Reports Stem Cells, 2007, , .	0.1	8
83	Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007, 25, 803-816.	9.4	983
84	Targeted chromosome elimination from ES-somatic hybrid cells. Nature Methods, 2007, 4, 23-25.	9.0	90
85	Human Leukocyte Antigen Matching Estimations in a Hypothetical Bank of Human Embryonic Stem Cell Lines in the Japanese Population for Use in Cell Transplantation Therapy. Stem Cells, 2007, 25, 983-985.	1.4	161
86	Testatin transgenic and knockout mice exhibit normal sex-differentiation. Biochemical and Biophysical Research Communications, 2006, 341, 369-375.	1.0	6
87	Efficient establishment of human embryonic stem cell lines and long-term maintenance with stable karyotype by enzymatic bulk passage. Biochemical and Biophysical Research Communications, 2006, 345, 926-932.	1.0	297
88	NANOG maintains self-renewal of primate ES cells in the absence of a feeder layer. Genes To Cells, 2006, 11, 1115-1123.	0.5	44
89	A Method for the Selection of Human Embryonic Stem Cell Sublines with High Replating Efficiency After Single-Cell Dissociation. Stem Cells, 2006, 24, 2649-2660.	1.4	88
90	Establishment of the Gene-Inducible System in Primate Embryonic Stem Cell Lines. Stem Cells, 2006, 24, 2566-2572.	1.4	12

#	Article	IF	CITATIONS
91	Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15894-15899.	3.3	211
92	Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13624-13628.	3.3	72
93	Molecular Cloning and Function of Oct-3 Isoforms in Cynomolgus Monkey Embryonic Stem Cells. Stem Cells and Development, 2006, 15, 566-574.	1.1	4
94	Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. Journal of Clinical Investigation, 2005, 115, 102-109.	3.9	418
95	Establishment of Novel Embryonic Stem Cell Lines Derived from the Common Marmoset (Callithrix) Tj ETQq1 1	0.784314 1.4	rgBT_/Overlo
96	Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development (Cambridge), 2005, 132, 117-122.	1.2	119
97	Nanog expression in mouse germ cell development. Gene Expression Patterns, 2005, 5, 639-646.	0.3	257
98	RNF17, a component of the mammalian germ cell nuage, is essential for spermiogenesis. Development (Cambridge), 2005, 132, 4029-4039.	1.2	119
99	In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Experimental Cell Research, 2005, 309, 68-77.	1.2	85
100	Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression. Molecular and Cellular Biology, 2005, 25, 2475-2485.	1.1	446
101	Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiology of Disease, 2005, 20, 38-48.	2.1	70
102	RNA interference during spermatogenesis in mice. Developmental Biology, 2005, 282, 524-534.	0.9	51
103	Pluripotential competence of cells associated with Nanog activity. Mechanisms of Development, 2005, 122, 67-79.	1.7	238
104	Sequential Analysis of the α- and β-Globin Gene Expressions during Erythropoietic Differentiation from Primate ES Cells Blood, 2005, 106, 1744-1744.	0.6	0
105	Development of primitive and definitive hematopoiesis from nonhuman primate embryonic stem cells in vitro. Development (Cambridge), 2004, 131, 1869-1879.	1.2	75
106	Histone Code Modifications on Pluripotential Nuclei of Reprogrammed Somatic Cells. Molecular and Cellular Biology, 2004, 24, 5710-5720.	1.1	191
107	In Vitro and In Vivo Characterization of Pigment Epithelial Cells Differentiated from Primate Embryonic Stem Cells. , 2004, 45, 1020.		209
108	STAT3 Is Dispensable for Maintenance of Self-Renewal in Nonhuman Primate Embryonic Stem Cells. Stem Cells, 2004, 22, 861-872.	1.4	77

#	Article	IF	CITATIONS
109	A simple and efficient cryopreservation method for primate embryonic stem cells. International Journal of Developmental Biology, 2004, 48, 1149-1154.	0.3	93
110	Identification and Characterization of Hemoangiogenic Progenitors during Cynomolgus Monkey ES Cell Differentiation Blood, 2004, 104, 3222-3222.	0.6	0
111	Electroporation of cynomolgus monkey embryonic stem cells. Genesis, 2003, 37, 180-187.	0.8	29
112	Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Developmental Dynamics, 2003, 227, 504-510.	0.8	88
113	Mouse Tudor Repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mechanisms of Development, 2003, 120, 979-990.	1.7	113
114	Haploinsufficiency of Bcl-x leads to male-specific defects in fetal germ cells: differential regulation of germ cell apoptosis between the sexes. Developmental Biology, 2003, 264, 202-216.	0.9	43
115	Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5828-5833.	3.3	260
116	Growth and Differentiation of Cynomolgus Monkey ES Cells. Methods in Enzymology, 2003, 365, 417-429.	0.4	8
117	Mammalian BarH1Confers Commissural Neuron Identity on Dorsal Cells in the Spinal Cord. Journal of Neuroscience, 2003, 23, 1987-1991.	1.7	53
118	Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1580-1585.	3.3	462
119	Insulators prevent transcriptional interference between two promoters in a double gene construct for transgenesis. FEBS Letters, 2002, 520, 47-52.	1.3	34
120	Embryonic Stem Cell Lines of Nonhuman Primates. Scientific World Journal, The, 2002, 2, 1762-1773.	0.8	32
121	Autonomous Transition into Meiosis of Mouse Fetal Germ Cells in Vitro and Its Inhibition by gp130-Mediated Signaling. Developmental Biology, 2001, 229, 468-479.	0.9	182
122	Efficient Gene Transfer into the Embryonic Mouse Brain Using in Vivo Electroporation. Developmental Biology, 2001, 240, 237-246.	0.9	690
123	Pod-1/Capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-1. Mechanisms of Development, 2001, 102, 135-144.	1.7	57
124	Tumour invasion and metastasis are promoted in mice deficient in tenascin-X. Genes To Cells, 2001, 6, 1101-1111.	0.5	67
125	Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Developmental Dynamics, 2001, 222, 273-279.	0.8	263
126	Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 2001, 11, 1553-1558.	1.8	814

#	Article	IF	CITATIONS
127	To Reviews on Embryonic Stem Cells and Germ Line. Cell Structure and Function, 2001, 26, 117-117.	0.5	0
128	In vivo transfection of testicular germ cells and transgenesis by using the mitochondrially localized jellyfish fluorescent protein gene. FEBS Letters, 2000, 487, 248-251.	1.3	55
129	Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature, 1998, 395, 177-181.	13.7	255
130	Rac1 is required for the formation of three germ layers during gastrulation. Oncogene, 1998, 17, 3427-3433.	2.6	301
131	Gene Transfection of Mouse Primordial Germ Cellsin Vitroand Analysis of Their Survival and Growth Control. Experimental Cell Research, 1997, 230, 76-83.	1.2	51
132	Filopodia and growth cones in the vertically migrating granule cells of the postnatal mouse cerebellum. Experimental Brain Research, 1997, 117, 17-29.	0.7	19
133	Protoâ€oncogene of intâ€3 , a mouse Notch homologue, is expressed in endothelial cells during early embryogenesis. Genes To Cells, 1997, 2, 213-224.	0.5	66
134	Autonomous Regulation of Proliferation and Growth Arrest in Mouse Primordial Germ Cells Studied by Mixed and Clonal Cultures. Experimental Cell Research, 1996, 222, 291-297.	1.2	34
135	A combination of Buffalo rat liver cell-conditioned medium, forskolin and membrane-bound stem cell factor stimulates rapid proliferation of mouse primordial germ cells in vitro similar to that in vivo. Development Growth and Differentiation, 1996, 38, 315-322.	0.6	10
136	Quantitative Analysis of Striped Coat-Color Patterns in Large White→Duroc Chimeric Pigs With Special Reference to the Genetic Control Mechanisms of the Dominant Black-Eyed White Phenotype. Pigment Cell & Melanoma Research, 1996, 9, 289-297.	4.0	0
137	Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 1995, 377, 539-544.	13.7	1,698
138	Retinoic Acid Is a Potent Growth Activator of Mouse Primordial Germ Cells in Vitro. Developmental Biology, 1995, 168, 683-685.	0.9	133
139	Migration Behavior of Granule Cell Neurons in Cerebellar Cultures I. A PKH26 Labeling Study in Microexplant and Organotypic Cultures. (mouse cerebellar granule cell/microexplant) Tj ETQq1 1 0.784314 rgBT	/Overlock 0.6	10 Tf 50 26
140	Migration Behavior of Granule Cell Neurons in Cerebellar Cultures. II. An Electron Microscopic Study. (cerebellar granule cells/microexplant cultures/filopodia/cytoskeletal elements/electron) Tj ETQq0 0 0 rgB1	- /Overloct	r 100Tf 50 21
141	Tumor Necrosis Factor-α (TNF-α) Stimulates Proliferation of Mouse Primordial Germ Cells in Culture. Developmental Biology, 1994, 161, 91-95.	0.9	71
142	Development of Postimplantation Mouse Embryos: Unexplored Field Rich in Unanswered Questions. (gastrulation/primordial germ cell/neurulation/stem cell/cell lineage). Development Growth and Differentiation, 1992, 34, 489-499.	0.6	4
143	Culture of Embryonic Cells for Analysis of Amphibian and Mammalian Early Embryogenesis. , 1991, , 43-56.		1
144	Radial Columnar Patches in the Chimeric Cerebral Cortex Visualized by Use of Mouse Embryonic Stem Cells Expressing beta-Galactosidase. (mouse chimera/ES cell/cerebral cortex/beta-galactosidase). Development Growth and Differentiation, 1991, 33, 571-578.	0.6	19

#	Article	IF	CITATIONS
145	A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous β-galactosidase expression. Cell Differentiation and Development, 1990, 29, 181-186.	0.4	179
146	Cell lineage analyses of epithelia and blood vessels in chimeric mouse embryos by use of an embryonic stem cell line expressing the β-galactosidase gene. Cell Differentiation and Development, 1990, 29, 187-194.	0.4	25
147	Granule cell behavior on laminin in cerebellar microexplant cultures. Developmental Brain Research, 1990, 52, 63-73.	2.1	74
148	Formation of the Primitive Streak and Mesoderm Cells in Mouse Embryos-Detailed Scanning Electron Microscopical Study. (primitive streak/cell migration/extracellular matrix/mouse) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 622	Td (gastrulat
	209-218.		
149	Laminin Fibrils in Newt Gastrulae Visualized by the Immunofluorescent Staining. (gastrulation/laminin/immunofluorescent staining/newt/amphibian). Development Growth and Differentiation, 1985, 27, 639-643.	0.6	33
150	Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis gastrulae. Developmental Biology, 1985, 107, 264-268.	0.9	74
151	Cell Locomotion and Contact Guidance in Amphibian Gastrulation. American Zoologist, 1984, 24, 615-627.	0.7	39
152	Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature, 1984, 307, 453-455.	13.7	118
153	Cell locomotion in vitro by Xenopus laevis gastrula mesodermal cells. Cell Motility, 1982, 2, 149-161.	1.9	52