

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11820643/publications.pdf Version: 2024-02-01

CUV TEAD

#	Article	IF	CITATIONS
1	in vivo localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7 , at endogenous expression levels. Neurobiology of Disease, 2017, 103, 123-132.	4.4	15
2	1. Molecular cues that guide the development of neural connectivity. , 2017, , 1-14.		0
3	Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1842-1865.	3.8	77
4	Commissureless Regulation of Axon Outgrowth across the Midline Is Independent of Rab Function. PLoS ONE, 2013, 8, e64427.	2.5	5
5	The Batten disease gene CLN3 is required for the response to oxidative stress. Human Molecular Genetics, 2011, 20, 2037-2047.	2.9	46
6	Interactions between the juvenile Batten disease gene, CLN3, and the Notch and JNK signalling pathways. Human Molecular Genetics, 2009, 18, 667-678.	2.9	44
7	Getting axons onto the right path: the role of transcription factors in axon guidance. Development (Cambridge), 2007, 134, 439-448.	2.5	73
8	Drosophilaas a genetic and cellular model for studies on axonal growth. Neural Development, 2007, 2, 9.	2.4	58
9	Functions of the segment polarity genes midline and H15 in Drosophila melanogaster neurogenesis. Developmental Biology, 2006, 292, 418-429.	2.0	17
10	mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—Analysis of its role in Drosophila tracheal morphogenesis. Developmental Biology, 2005, 288, 179-193.	2.0	114
11	Drosophila T Box Proteins Break the Symmetry of Hedgehog-Dependent Activation of wingless. Current Biology, 2004, 14, 1694-1702.	3.9	39
12	Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. Journal of Comparative Neurology, 2004, 468, 467-481.	1.6	41
13	Neuroglian and FasciclinII can promote neurite outgrowth via the FGF receptor Heartless. Molecular and Cellular Neurosciences, 2004, 26, 282-291.	2.2	43
14	Axon guidance mechanisms and molecules: lessons from invertebrates. Nature Reviews Neuroscience, 2003, 4, 910-922.	10.2	123
15	The N-terminal and transmembrane domains of Commissureless are necessary for its function and trafficking within neurons. Mechanisms of Development, 2003, 120, 1009-1019.	1.7	16
16	Drosophila Nedd4, a Ubiquitin Ligase, Is Recruited by Commissureless to Control Cell Surface Levels of the Roundabout Receptor. Neuron, 2002, 35, 447-459.	8.1	158
17	Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline. Development (Cambridge), 2002, 129, 2947-2956.	2.5	66
18	A new code for axons. Nature, 2001, 409, 472-473.	27.8	7

GUY TEAR

#	Article	IF	CITATIONS
19	Neuronal guidance: a genetic perspective. Trends in Genetics, 1999, 15, 113-118.	6.7	31
20	Dosage-Sensitive and Complementary Functions of Roundabout and Commissureless Control Axon Crossing of the CNS Midline. Neuron, 1998, 20, 25-33.	8.1	283
21	Roundabout Controls Axon Crossing of the CNS Midline and Defines a Novel Subfamily of Evolutionarily Conserved Guidance Receptors. Cell, 1998, 92, 205-215.	28.9	813
22	commissureless Controls Growth Cone Guidance across the CNS Midline in Drosophila and Encodes a Novel Membrane Protein. Neuron, 1996, 16, 501-514.	8.1	239
23	glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell, 1995, 82, 1013-1023.	28.9	435
24	Mutations affecting growth cone guidance in drosophila: Genes necessary for guidance toward or away from the midline. Neuron, 1993, 10, 409-426.	8.1	641