
Rajeswari Ravichandran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11820238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of conducting polymers and their issues in biomedical engineering. Journal of the Royal Society Interface, 2010, 7, S559-79.	1.5	329
2	Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials, 2012, 33, 846-855.	5.7	220
3	Biomaterial strategies for alleviation of myocardial infarction. Journal of the Royal Society Interface, 2012, 9, 1-19.	1.5	186
4	Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications. Macromolecular Bioscience, 2012, 12, 286-311.	2.1	157
5	Poly(Glycerol Sebacate)/Gelatin Core/Shell Fibrous Structure for Regeneration of Myocardial Infarction. Tissue Engineering - Part A, 2011, 17, 1363-1373.	1.6	121
6	Gold Nanoparticle Loaded Hybrid Nanofibers for Cardiogenic Differentiation of Stem Cells for Infarcted Myocardium Regeneration. Macromolecular Bioscience, 2014, 14, 515-525.	2.1	102
7	Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, 2012, 23, 385102.	1.3	92
8	Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. International Journal of Cardiology, 2013, 167, 1461-1468.	0.8	81
9	Biomimetic surface modification of titanium surfaces for early cell capture by advanced electrospinning. Biomedical Materials (Bristol), 2012, 7, 015001.	1.7	78
10	Effects of nanotopography on stem cell phenotypes. World Journal of Stem Cells, 2009, 1, 55.	1.3	77
11	Evaluation of the Biocompatibility of PLACL/Collagen Nanostructured Matrices with Cardiomyocytes as a Model for the Regeneration of Infarcted Myocardium. Advanced Functional Materials, 2011, 21, 2291-2300.	7.8	64
12	Electrospun inorganic and polymer composite nanofibers for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 365-385.	1.9	64
13	Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol) Tj ETQq1 1 0.784314 rgBT /	Overlock 2	10 Tf 50 262
14	Mimicking Native Extracellular Matrix with Phytic Acidâ€Crosslinked Protein Nanofibers for Cardiac Tissue Engineering. Macromolecular Bioscience, 2013, 13, 366-375.	2.1	59
15	Mimicking Nanofibrous Hybrid Bone Substitute for Mesenchymal Stem Cells Differentiation into Osteogenesis. Macromolecular Bioscience, 2013, 13, 696-706.	2.1	44
16	Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1689-1699.	1.7	41
17	Elastomeric Core/Shell Nanofibrous Cardiac Patch as a Biomimetic Support for Infarcted Porcine Myocardium. Tissue Engineering - Part A, 2015, 21, 1288-1298.	1.6	40
18	Composite poly-l-lactic acid/poly-(l̂±,l̂²)-dl-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Materials Science and Engineering C. 2012, 32, 1443-1451.	3.8	36

#	Article	IF	CITATIONS
19	Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease. International Journal of Nanomedicine, 2012, 7, 5969.	3.3	33
20	Click chemistry approach for fabricating PVA/gelatin nanofibers for the differentiation of ADSCs to keratinocytes. Journal of Materials Science: Materials in Medicine, 2013, 24, 2863-2871.	1.7	25
21	Multimodal biomaterial strategies for regeneration of infarcted myocardium. Journal of Materials Chemistry, 2010, 20, 8819.	6.7	23
22	Buckled structures and 5-azacytidine enhance cardiogenic differentiation of adipose-derived stem cells. Nanomedicine, 2013, 8, 1985-1997.	1.7	18