Jagajjit Sahu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1181779/publications.pdf

Version: 2024-02-01

1039880 794469 37 413 9 19 citations h-index g-index papers 40 40 40 739 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative genomics of cetartiodactyla: energy metabolism underpins the transition to an aquatic lifestyle., 2021, 9, coaa136.		12
2	Role of Microbial Biofilms in Agriculture: Perspectives on Plant and Soil Health., 2021,, 251-288.		1
3	Mining Proteome Research Reports: A Bird's Eye View. Proteomes, 2021, 9, 29.	1.7	2
4	Novel Coronavirus Disease and the Current Scenario of the Global Health Emergency. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2020, 19, 203-205.	1.1	0
5	Transient Sub-cellular Localization and In Vivo Protein-Protein Interaction Study of Multiple Abiotic Stress-Responsive AteIF4A-III and AtALY4 Proteins in Arabidopsis thaliana. Plant Molecular Biology Reporter, 2020, 38, 538-553.	1.0	2
6	Genomics of Extremophiles for Sustainable Agriculture and Biotechnological Applications (Part I). Current Genomics, 2020, 21, 78-79.	0.7	2
7	Genomics of Extremophiles for Sustainable Agriculture and Biotechnological Applications (Part II). Current Genomics, 2020, 21, 238-239.	0.7	1
8	Seed Biotechnology for Improvement of Staple Crops. , 2020, , 503-519.		1
9	Insights in Plant-Microbe Interaction through Genomics Approach (Part 1). Current Genomics, 2020, 21, 155-156.	0.7	5
10	Insights in Plant-Microbe Interaction through Genomics Approach (Part III). Current Genomics, 2020, 21, 399-400.	0.7	2
11	Insights in Plant-Microbe Interaction through Genomics Approach (Part IV). Current Genomics, 2020, 21, 479-480.	0.7	O
12	Dissecting the Role of Promoters of Pathogen-sensitive Genes in Plant Defense. Current Genomics, 2020, 21, 491-503.	0.7	9
13	Insights in Plant-Microbe Interaction Through Genomics Approach (Part II). Current Genomics, 2020, 21, 319-320.	0.7	2
14	A Systematic Review on the Role of Mycorrhiza in Soil Genesis Using Scientometrics Analysis. , 2019, , 95-109.		1
15	A scientometric analysis on WoS reports to evaluate the research on Fusarium oxysporum since 2009. Archives of Phytopathology and Plant Protection, 2019, 52, 795-812.	0.6	4
16	Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Frontiers in Pharmacology, 2019, 10, 509.	1.6	73
17	Revealing shared differential co-expression profiles in rice infected by virus from reoviridae and sequiviridae group. Gene, 2019, 698, 82-91.	1.0	5
18	Mining and comparative survey of EST–SSR markers among members of Euphorbiaceae family. Molecular Biology Reports, 2018, 45, 453-468.	1.0	5

#	Article	IF	Citations
19	In silico mining and characterization of simple sequence repeats (SSRs) from Euphorbia esula expressed sequence tags (ESTs): A potential crop for biofuel. Plant OMICS, 2017, 10, 53-63.	0.4	1
20	Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus. Scientific Reports, 2016, 6, 21026.	1.6	27
21	Molecular recognition of avirulence protein (avrxa5) by eukaryotic transcription factor xa5 of rice (Oryza sativa L.): Insights from molecular dynamics simulations. Journal of Molecular Graphics and Modelling, 2015, 57, 49-61.	1.3	8
22	E-Microsatellite Markers for <i>Centella asiatica </i> (Gotu Kola) Genome: Validation and Cross-Transferability in Apiaceae Family for Plant Omics Research and Development. OMICS A Journal of Integrative Biology, 2015, 19, 52-65.	1.0	9
23	Big Next Generation Sequencing Data. Transcriptomics: Open Access, 2015, 03, .	0.2	O
24	Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags. Gene, 2014, 537, 333-342.	1.0	43
25	Rediscovering Medicinal Plants' Potential with OMICS: Microsatellite Survey in Expressed Sequence Tags of Eleven Traditional Plants with Potent Antidiabetic Properties. OMICS A Journal of Integrative Biology, 2014, 18, 298-309.	1.0	20
26	Structure-Based Computational Study of Two Disease Resistance Gene Homologues (Hm1 and Hm2) in Maize (Zea mays L.) with Implications in Plant-Pathogen Interactions. PLoS ONE, 2014, 9, e97852.	1.1	28
27	Structural Insight of Bos Indicus ITGB6 Receptor Gene for FMDV Host Tropism. Advances in Animal and Veterinary Sciences, 2014, 2, 549-556.	0.1	0
28	Insights into the structure–function relationship of disease resistance protein HCTR in maize (Zea) Tj ETQq0 C 2013, 45, 50-64.	0 0 rgBT /C 1.3	Overlock 10 Tf 9
29	Molecular Phylogeny, Homology Modeling, and Molecular Dynamics Simulation of Race-Specific Bacterial Blight Disease Resistance Protein (xa5) of Rice: A Comparative Agriproteomics Approach. OMICS A Journal of Integrative Biology, 2013, 17, 423-438.	1.0	9
30	In silico analyses of superoxide dismutases (SODs) of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology, 2013, 22, 150-156.	0.9	30
31	Structural analysis and molecular dynamics simulations of novel \hat{l} -endotoxin Cry1Id from Bacillus thuringiensis to pave the way for development of novel fusion proteins against insect pests of crops. Journal of Molecular Modeling, 2013, 19, 5301-5316.	0.8	12
32	In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (<i><i>Ipomoea batatasL) Expressed Sequence Tags (ESTs). Plant Signaling and Behavior, 2013, 8, e26543.</i></i>	1.2	45
33	A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. Journal of Molecular Modeling, 2012, 18, 4761-4780.	0.8	9
34	An approach to delineate primers for a group of poorly conserved sequences incorporating the common motif region. Bioinformation, 2012, 8, 181-184.	0.2	1
35	Towards an efficient computational mining approach to identify EST-SSR markers. Bioinformation, 2012, 8, 201-202.	0.2	6
36	ESMP: A high-throughput computational pipeline for mining SSR markers from ESTs. Bioinformation, 2012, 8, 206-208.	0.2	7

#	Article	lF	CITATIONS
37	Mining for SSRs and FDMs from expressed sequence tags of Camellia sinensis. Bioinformation, 2012, 8, 260-266.	0.2	19