Zhenghong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11817630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of <i>Mycobacterium neoaurum</i> for improved androst-1,4-diene-3,17-dione production. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 635-647.	3.0	21
2	mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Molecular Therapy, 2018, 26, 420-434.	8.2	132
3	Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Critical Reviews in Biotechnology, 2017, 37, 990-1005.	9.0	77
4	Extreme low dose of 5-fluorouracil reverses MDR in cancer by sensitizing cancer associated fibroblasts and down-regulating P-gp. PLoS ONE, 2017, 12, e0180023.	2.5	12
5	Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metabolic Engineering, 2016, 38, 310-321.	7.0	48
6	Efficient testosterone production by engineered Pichia pastoris co-expressing human 17β-hydroxysteroid dehydrogenase type 3 and Saccharomyces cerevisiae glucose 6-phosphate dehydrogenase with NADPH regeneration. Green Chemistry, 2016, 18, 1774-1784.	9.0	43
7	Curcumin Micelles Remodel Tumor Microenvironment and Enhance Vaccine Activity in an Advanced Melanoma Model. Molecular Therapy, 2016, 24, 364-374.	8.2	86
8	l-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2015, 99, 1665-1673.	3.6	42
9	Economic conversion of spirit-based distillers' grain to 2,3-butanediol by Bacillus amyloliquefaciens. Process Biochemistry, 2015, 50, 20-23.	3.7	20
10	Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials, 2015, 68, 54-66.	11.4	69
11	Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnology for Biofuels, 2015, 8, 129.	6.2	32
12	Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microbial Cell Factories, 2015, 14, 122.	4.0	47
13	The Cytochrome P450 Epoxygenase Pathway Regulates the Hepatic Inflammatory Response in Fatty Liver Disease. PLoS ONE, 2014, 9, e110162.	2.5	79
14	Lipid–calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials, 2014, 35, 4688-4698.	11.4	97
15	The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metabolic Engineering, 2014, 23, 34-41.	7.0	98
16	Co-delivery of Cisplatin and Rapamycin for Enhanced Anticancer Therapy through Synergistic Effects and Microenvironment Modulation. ACS Nano, 2014, 8, 4996-5009.	14.6	163
17	Nanoparticle-Delivered Transforming Growth Factor-β siRNA Enhances Vaccination against Advanced Melanoma by Modifying Tumor Microenvironment. ACS Nano, 2014, 8, 3636-3645.	14.6	253
18	Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014, 35, 7647-7653.	11.4	22

ZHENGHONG XU

#	Article	IF	CITATIONS
19	Efficient Whole-Cell Biocatalyst for Acetoin Production with NAD+ Regeneration System through Homologous Co-Expression of 2,3-Butanediol Dehydrogenase and NADH Oxidase in Engineered Bacillus subtilis. PLoS ONE, 2014, 9, e102951.	2.5	48
20	Two-Stage pH Control Strategy Based on the pH Preference of Acetoin Reductase Regulates Acetoin and 2,3-Butanediol Distribution in Bacillus subtilis. PLoS ONE, 2014, 9, e91187.	2.5	30
21	Moderate expression of the transcriptional regulator ALsR enhances acetoin production by <i>Bacillus subtilis</i> . Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1067-1076.	3.0	43
22	Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World Journal of Microbiology and Biotechnology, 2013, 29, 1783-1789.	3.6	30
23	Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis. Molecular Therapy, 2013, 21, 1919-1929.	8.2	165
24	Lipid-Coated Cisplatin Nanoparticles Induce Neighboring Effect and Exhibit Enhanced Anticancer Efficacy. ACS Nano, 2013, 7, 9896-9904.	14.6	125
25	Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. Journal of Controlled Release, 2013, 172, 259-265.	9.9	199
26	Reply to "On the Mechanism and Benefit of siRNA-mediated Targeting of CD47 in Cancer― Molecular Therapy, 2013, 21, 1812-1813.	8.2	1
27	Improved Production of 2,3-Butanediol in Bacillus amyloliquefaciens by Over-Expression of Glyceraldehyde-3-Phosphate Dehydrogenase and 2,3-butanediol Dehydrogenase. PLoS ONE, 2013, 8, e76149.	2.5	46
28	Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency. International Journal of Pharmaceutics, 2008, 359, 241-246.	5.2	139
29	A multifunctional nano device as non-viral vector for gene delivery: In vitro characteristics and transfection. Journal of Controlled Release, 2007, 118, 381-388.	9.9	33
30	Transferrin-mediated PEGylated nanoparticles for delivery of DNA/PLL. Nanotechnology, 2006, 17, 4148-4155.	2.6	7
31	In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. International Journal of Pharmaceutics, 2005, 288, 361-368.	5.2	139