
Koji Masuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1181683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Crack Shape and Saturation in Laboratory-Induced Seismicity by Water Infiltration in the Transversely Isotropic Case with Vertical Cracks. Pure and Applied Geophysics, 2021, 178, 3829.	0.8	1
2	Frictional properties of anorthite (feldspar): implications for the lower boundary of the seismogenic zone. Earth, Planets and Space, 2020, 72, .	0.9	3
3	Effects of frictional properties of quartz and feldspar in the crust on the depth extent of the seismogenic zone. Progress in Earth and Planetary Science, 2019, 6, .	1.1	12
4	Development of rock deformation techniques under high-pressure and high-temperature conditions. Synthesiology, 2016, 9, 97-107.	0.2	0
5	Laboratory evidence of strength recovery of a healed fault: implications for a mechanism responsible for creating wide fault zones. Earth, Planets and Space, 2015, 67, .	0.9	0
6	Source duration of stress and waterâ€pressure induced seismicity derived from experimental analysis of <i>P</i> wave pulse width in granite. Geophysical Research Letters, 2013, 40, 3567-3571.	1.5	1
7	Effect of water on weakening preceding rupture of laboratoryâ€scale faults: Implications for longâ€ŧerm weakening of crustal faults. Geophysical Research Letters, 2012, 39, .	1.5	10
8	On the transient response of serpentine (antigorite) gouge to stepwise changes in slip velocity under high-temperature conditions. Journal of Geophysical Research, 2011, 116, .	3.3	49
9	Effects of pressure on pore characteristics and permeability of porous rocks as estimated from seismic wave velocities in cores from TCDP Hole-A. Geophysical Journal International, 2010, 182, 1148-1160.	1.0	7
10	Potential of phyllosilicate dehydration and dehydroxylation reactions to trigger earthquakes. Journal of Geophysical Research, 2009, 114, .	3.3	10
11	Frictional strength of fault gouge in Taiwan Chelungpu fault obtained from TCDP Hole B. Tectonophysics, 2008, 460, 198-205.	0.9	20
12	Low total and inorganic carbon contents within the Taiwan Chelungpu fault system. Geochemical Journal, 2007, 41, 391-396.	0.5	26
13	Depth dependent strength of the fault gouge at the Atotsugawa fault, central Japan: A possible mechanism for its creeping motion. Physics of the Earth and Planetary Interiors, 2007, 161, 115-125.	0.7	6
14	Effects of clay content on the frictional strength and fluid transport property of faults. Journal of Geophysical Research, 2007, 112, .	3.3	134
15	Fault strength drop due to phase transitions in the pore fluid. Geophysical Research Letters, 2007, 34, .	1.5	26
16	The influence of pore fluids on seismic wave velocities under high temperature and high pressure conditions: Development of a new technique with gas apparatus at AIST, Japan. Earth, Planets and Space, 2006, 58, 1515-1518.	0.9	12
17	Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. Journal of Structural Geology, 2004, 26, 247-258.	1.0	204
18	Velocity Measurements and Crack Density Determination During Wet Triaxial Experiments on Oshima and Toki Granites. Pure and Applied Geophysics, 2003, 160, 869-887.	0.8	52

Koji Masuda

#	Article	IF	CITATIONS
19	A new gas-medium, high-pressure and high-temperature deformation apparatus at AIST, Japan. Earth, Planets and Space, 2002, 54, 1091-1094.	0.9	29
20	Comparison of the microfracture localization in granite between fracturation and slip of a preexisting macroscopic healed joint by acoustic emission measurements. Journal of Geophysical Research, 2001, 106, 8687-8698.	3.3	24
21	Effects of water on rock strength in a brittle regime. Journal of Structural Geology, 2001, 23, 1653-1657.	1.0	123
22	Differential laser-interferometer for thermal expansion measurements. American Mineralogist, 2000, 85, 279-282.	0.9	8
23	Limits on the value of ÎT and Î ³ for MgSiO3 perovskite. Physics of the Earth and Planetary Interiors, 1996, 98, 31-46.	0.7	21
24	Pure silicate perovskite and the PREM lower mantle model: a thermodynamic analysis. Physics of the Earth and Planetary Interiors, 1995, 89, 35-49.	0.7	28
25	A new thermodynamic approach for high-pressure physics. Physics of the Earth and Planetary Interiors, 1995, 91, 3-16.	0.7	38
26	The isentropic density profile of silicate perovskite computed by the thermal pressure. Geophysical Research Letters, 1995, 22, 2211-2214.	1.5	3
27	Elastic and viscoelastic properties of α iron at high temperatures. Journal of Geophysical Research, 1995, 100, 17689-17698.	3.3	23
28	A thermodynamic method for computing thermal expansivity, α, versus T along isobars for silicate perovskite. Physics of the Earth and Planetary Interiors, 1994, 85, 227-236.	0.7	45
29	Laboratory study of effects of In Situ stress state and strength on fluid-induced seismicity. International Journal of Rock Mechanics and Mining Sciences, 1993, 30, 1-10.	0.3	15
30	P-Coda Amplitude As a Measure of Earthquake Magnitude of Local Microearthquake Journal of Physics of the Earth, 1992, 40, 565-572.	1.4	2
31	Positive feedback fracture process induced by nonuniform highâ€pressure water flow in dilatant granite. Journal of Geophysical Research, 1990, 95, 21583-21592.	3.3	49
32	Laboratory study of fluid pressure diffusion in rock using acoustic emissions. Journal of Geophysical Research, 1990, 95, 21593-21607.	3.3	29
33	Electromagnetic and acoustic emission associated with rock fracture. Physics of the Earth and Planetary Interiors, 1989, 57, 157-168.	0.7	193
34	Effects of water on time-dependent behavior of granite Journal of Physics of the Earth, 1988, 36, 291-313.	1.4	39
35	Experimental study of strain-rate dependence and pressure dependence of failure properties of granite Journal of Physics of the Earth, 1987, 35, 37-66.	1.4	89
36	Time-Dependent Properties of Rocks and Its Implications on Earthquake Prediction. , 1985, , 595-605.		3

Time-Dependent Properties of Rocks and Its Implications on Earthquake Prediction. , 1985, , 595-605. 36