Angelica Marquetotti Salcedo Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1181201/publications.pdf

Version: 2024-02-01

79 papers

2,162 citations

236833 25 h-index 254106 43 g-index

84 all docs

84 docs citations

84 times ranked 1969 citing authors

#	Article	IF	Citations
1	Hydrogels produced from natural polymers: a review on its use and employment in water treatment. Brazilian Journal of Chemical Engineering, 2023, 40, 23-38.	0.7	10
2	Low-cost adsorbent prepared from soybean hulls residues as potential alternative for cationic dyes removal. Journal of Dispersion Science and Technology, 2023, 44, 2034-2044.	1.3	2
3	Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environmental Technology (United Kingdom), 2023, 44, 3949-3964.	1.2	0
4	Graphene oxide functionalized with cobalt ferrites applied to the removal of bisphenol A: ionic study, reuse capacity and desorption kinetics. Environmental Technology (United Kingdom), 2022, 43, 1388-1404.	1.2	9
5	Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from <i>Punica granatum</i> leaf extract. Environmental Technology (United Kingdom), 2022, 43, 3047-3063.	1.2	38
6	Investigation of <i>Citrus reticulata </i> peels as an efficient and low-cost adsorbent for the removal of safranin orange dye. Environmental Technology (United Kingdom), 2022, 43, 4315-4329.	1.2	21
7	Layerâ€byâ€layer selfâ€assembly of polyethersulphone microfiltration membranes for dye removal and flux recovery improvement. Canadian Journal of Chemical Engineering, 2022, 100, 1920-1929.	0.9	2
8	Membrane surface functionalization by the deposition of polyvinyl alcohol and graphene oxide for dyes removal and treatment of a simulated wastewater. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108725.	1.8	26
9	Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water. Chemosphere, 2022, 289, 133213.	4.2	33
10	Valorization of soybean oil residue through advanced technology of graphene oxide modified membranes for tocopherol recovery. Canadian Journal of Chemical Engineering, 2022, 100, 3736-3749.	0.9	0
11	Investigation of two new low-cost adsorbents functionalized with magnetic nanoparticles for the efficient removal of triclosan and a synthetic mixture. Environmental Science and Pollution Research, 2022, 29, 46813-46829.	2.7	9
12	Efficient performance of copper oxide nanoparticles synthesized with pomegranate leaf extract for neutral red dye adsorption. Environmental Progress and Sustainable Energy, 2022, 41, .	1.3	11
13	Produção de filmes biodegradáveis a partir de resÃduos de frutas e vegetais: uma revisão atualizada. Research, Society and Development, 2022, 11, e54311528544.	0.0	1
14	Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environmental Technology (United Kingdom), 2021, 42, 351-357.	1.2	7
15	A simple and effective method for Escherichia coli inactivation in aqueous medium using natural based superparamagnetic coagulant. Environmental Progress and Sustainable Energy, 2021, 40, e13503.	1.3	2
16	Application of graphene nanosheet oxide for atrazine adsorption in aqueous solution: synthesis, material characterization, and comprehension of the adsorption mechanism. Environmental Science and Pollution Research, 2021, 28, 5731-5741.	2.7	15
17	A review of Moringa oleifera seeds in water treatment: Trends and future challenges. Chemical Engineering Research and Design, 2021, 147, 405-420.	2.7	62
18	Discolouration of contaminated water with textile dye through a combined coagulation/flocculation and membrane separation process with different natural coagulants extracted from ⟨scp⟩⟨i⟩Moringa oleifera⟨ i⟩⟨ scp⟩ ⟨i⟩Lam⟨ i⟩. seeds. Canadian Journal of Chemical Engineering, 2021, 99, 1976-1983.	0.9	6

#	Article	IF	Citations
19	Modified <i>Moringa oleifera</i> Lam. Seed husks as low-cost biosorbent for atrazine removal. Environmental Technology (United Kingdom), 2021, 42, 1092-1103.	1.2	27
20	Bisfenol A adsorption using a low-cost adsorbent prepared from residues of babassu coconut peels. Environmental Technology (United Kingdom), 2021, 42, 2372-2384.	1.2	17
21	Desenvolvimento de requeij $ ilde{\mathbb{A}}$ £o com extrato aquoso de semente de Moringa oleifera. Research, Society and Development, 2021, 10, e54010414381.	0.0	О
22	Optimization of the extraction of antioxidants from Moringa leaves: A comparative study between ultrasound―and ultraâ€homogenizerâ€assisted extractions. Journal of Food Processing and Preservation, 2021, 45, e15512.	0.9	4
23	Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of the Total Environment, 2021, 789, 147957.	3.9	74
24	Yogurt production added ultrafiltered seed extract of Moringa oleifera Lam Biocatalysis and Agricultural Biotechnology, 2021, 37, 102159.	1.5	9
25	Performance of a hybrid coagulation/flocculation process followed by modified microfiltration membranes for the removal of solophenyl blue dye. Chemical Engineering and Processing: Process Intensification, 2021, 168, 108577.	1.8	40
26	Investigation of <i>Moringa oleifera</i> seeds as effective and low-cost adsorbent to remove yellow dye tartrazine in fixed-bed column. Separation Science and Technology, 2020, 55, 13-25.	1.3	12
27	Biopolymer extracted from <i>Moringa oleifera</i> Lam. in conjunction with graphene oxide to modify membrane surfaces. Environmental Technology (United Kingdom), 2020, 41, 3069-3080.	1.2	13
28	Mathematical modelling applied to the rate-limiting mass transfer step determination of a herbicide biosorption onto fixed-bed columns. Environmental Technology (United Kingdom), 2020, 41, 638-648.	1.2	10
29	Analysis of the influence of natural adsorbent functionalization (<i>Moringa oleifera </i>) for Pb(II) removal from contaminated water. Environmental Progress and Sustainable Energy, 2020, 39, e13318.	1.3	8
30	Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Environmental Science and Pollution Research, 2020, 27, 6088-6102.	2.7	9
31	Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal. Chemical Engineering Research and Design, 2020, 134, 140-148.	2.7	45
32	Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes. Environmental Science and Pollution Research, 2020, 27, 12192-12201.	2.7	28
33	Aditivos alimentares naturais emergentes: Uma revisão. , 2020, , 46-84.		0
34	Aditivos alimentares naturais emergentes: Uma revis \tilde{A} £o. , 2020, , 46-84.		0
35	Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue. Materials Letters, 2019, 257, 126685.	1.3	89
36	Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Applied Surface Science, 2019, 486, 499-507.	3.1	77

#	Article	IF	CITATIONS
37	Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. Journal of Cleaner Production, 2019, 219, 809-817.	4.6	107
38	Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Science of the Total Environment, 2019, 664, 222-229.	3.9	155
39	Protein fractionation of <i>Moringa oleifera</i> Lam. seeds and functionalization with magnetic particles for the treatment of reactive black 5 solution. Canadian Journal of Chemical Engineering, 2019, 97, 2309-2317.	0.9	21
40	The use of Moringa oleifera seeds and their fractionated proteins for Microcystis aeruginosa and microcystin‣R removal from water. Canadian Journal of Chemical Engineering, 2019, 97, 1307-1316.	0.9	5
41	Lowâ€cost biosorbent based on <i>Moringa oleifera</i> residues for herbicide atrazine removal in a fixedâ€bed column. Canadian Journal of Chemical Engineering, 2018, 96, 1468-1478.	0.9	16
42	Activated carbon of Babassu coconut impregnated with copper nanoparticles by green synthesis for the removal of nitrate in aqueous solution. Environmental Technology (United Kingdom), 2018, 39, 1994-2003.	1.2	20
43	Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. Journal of Cleaner Production, 2018, 171, 85-97.	4.6	131
44	Water decontamination containing nitrate using biosorption with Moringa oleifera in dynamic mode. Environmental Science and Pollution Research, 2018, 25, 21544-21554.	2.7	5
45	Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Materials Research, 2018, 21, .	0.6	35
46	Moringa oleifera seed extracts as promising natural thickening agents for food industry: Study of the thickening action in yogurt production. LWT - Food Science and Technology, 2018, 97, 39-44.	2.5	28
47	PREPARATION OF Moringa oleifera SEEDS AS COAGULANT IN WATER TREATMENT. Environmental Engineering and Management Journal, 2018, 17, 1123-1129.	0.2	6
48	Environmentally friendly biosorbents (husks, pods and seeds) from <i>Moringa oleifera </i> for Pb(II) removal from contaminated water. Environmental Technology (United Kingdom), 2017, 38, 3145-3155.	1.2	36
49	Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separation and Purification Technology, 2017, 180, 114-124.	3.9	126
50	Assessment of quinoxyfen phototransformation pathways by liquid chromatography coupled to accurate mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 2981-2991.	1.9	8
51	Effects of Triton X-100 and PEG on the Catalytic Properties and Thermal Stability of Lipase from Free and Immobilized on Glyoxyl-Agarose. The Open Biochemistry Journal, 2017, 11, 66-76.	0.3	18
52	Hybrid gravitational microfiltration system for drinking water purification. Revista Ambiente & $\tilde{A}gua$, 2017, 12, 168.	0.1	5
53	Trihalomethanes minimization in drinking water by coagulation/flocculation/sedimentation with natural coagulant <i>Moringa oleifera</i> Lam and activated carbon filtration. Canadian Journal of Chemical Engineering, 2016, 94, 1277-1284.	0.9	12
54	Groundwater nitrate contamination: Assessment and treatment using <i>Moringa oleifera</i> Lam. seed extract and activated carbon filtration. Canadian Journal of Chemical Engineering, 2016, 94, 725-732.	0.9	5

#	Article	IF	Citations
55	Extraction and phase behaviour of <i>Moringa oleifera</i> seed oil using compressed propane. Canadian Journal of Chemical Engineering, 2016, 94, 2195-2201.	0.9	13
56	Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environmental Science and Pollution Research, 2016, 23, 7692-7700.	2.7	64
57	Removal of excess fluoride from groundwater using natural coagulant <i>Moringa oleifera</i> Lam and microfiltration. Canadian Journal of Chemical Engineering, 2015, 93, 37-45.	0.9	18
58	Optimization of process conditions in water treatment through coagulation diagrams, using <i>Moringa oleifera </i> Lam and aluminium sulphate. Desalination and Water Treatment, 2015, 56, 1787-1792.	1.0	5
59	Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 2015, 276, 166-173.	6.6	91
60	Antioxidant and rheological properties of guava jam with added concentrated grape juice. Journal of the Science of Food and Agriculture, 2014, 94, 146-152.	1.7	18
61	Improvement of the coagulation/flocculation process using a combination of <i>Moringa oleifera </i> Lam with anionic polymer in water treatment. Environmental Technology (United) Tj ETQq1 1 0.7843	141r g BT /0	Overbock 10 T
62	Ultrafiltration Combined with Coagulation/Flocculation/Sedimentation Using Moringa oleifera as Coagulant to Treat Dairy Industry Wastewater. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	28
63	Development and the physical, chemical, microbiological and sensory analyses of red pepper seasoned with parmesan cheese - doi: 10.4025/actascitechnol.v35i3.12794. Acta Scientiarum - Technology, 2013, 35, .	0.4	0
64	Application of Hybrid Process of Coagulation/Flocculation and Membrane Filtration for the Removal of Protozoan Parasites from Water. Procedia Engineering, 2012, 42, 148-160.	1.2	13
65	Fluoride Removal from Water Using Combined Moringa oleifera/Ultrafiltration Process. Water, Air, and Soil Pollution, 2012, 223, 6083-6093.	1.1	21
66	Hybrid process of coagulation/flocculation with Moringa oleifera followed by ultrafiltration to remove Microcystis sp. cells from water supply. Procedia Engineering, 2012, 42, 865-872.	1.2	20
67	\hat{l}^2 -Glucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 47-53.	1.8	35
68	Performance of a coagulation–ultrafiltration hybrid process for water supply treatment. Chemical Engineering Journal, 2011, 166, 483-489.	6.6	98
69	Immobilization–stabilization of glucoamylase: Chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochemistry, 2011, 46, 409-412.	1.8	35
70	Use of Moringa oleifera Seed as a Natural Adsorbent for Wastewater Treatment. Water, Air, and Soil Pollution, 2010, 206, 273-281.	1.1	82
71	Study of the Effect of Saline Solution on the Extraction of the Moringa oleifera Seed's Active Component for Water Treatment. Water, Air, and Soil Pollution, 2010, 211, 409-415.	1.1	103
72	Application of Hybrid Process of Coagulation/Flocculation and Membrane Filtration to Water Treatment. , 0, , .		0

#	Article	IF	Citations
73	Application of Hybrid Process of Coagulation/Flocculation and Membrane Filtration for the Removal of Protozoan Parasites from Water. , 0, , .		1
74	Magnetic coagulant based on Moringa oleifera seeds extract and super paramagnetic nanoparticles: optimization of operational conditions and reuse evaluation., 0, 106, 226-237.		28
75	Improvement of adsorption conditions of different parts of Moringa oleifera on the perception of diuron removal from contaminated waters., 0, 171, 331-343.		4
76	AVALIAÃ \sharp Ã f O DO POTENCIAL DA SEMENTE DE MORINGA OLEIFERA PARA OBTENÃ \sharp Ã f O DE COAGULANTE E Ã" UTILIZANDO ULTRA-SOM. , 0, , .	_EO	0
77	Evaluation of the groundwater quality and hydrogeochemistry characterization using multivariate statistics methods: case study of a hydrographic basin in Brazil., 0, 161, 203-215.		1
78	Effects of Moringa oleifera Lam. leaves extract on physicochemical, fatty acids profile, oxidative stability, microbiological and sensory properties of chicken mortadella. Journal of Food Processing and Preservation, 0, , .	0.9	1
79	Removal of copper ions from alembic $\langle i \rangle$ cacha \tilde{A} \hat{S} $a < i \rangle$ using agro-industrial residues as biosorbents. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 0, , 1-15.	1.1	0