
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11811805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermoresponsive Stiffness Softening of Hierarchically Porous Nanohybrid Membranes Promotes Niches for Mesenchymal Stem Cell Differentiation. Advanced Healthcare Materials, 2019, 8, e1801556.	7.6	12
2	Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants. Acta Biomaterialia, 2018, 80, 188-202.	8.3	22
3	New assessment criteria for durability evaluation of highly repellent surfaces. Wear, 2017, 390-391, 49-60.	3.1	6
4	Advanced low-energy durable coatings. International Journal of Energy Research, 2015, 39, 165-171.	4.5	8
5	Excimer ultraviolet sources for thin film deposition: a 15 year perspective. , 2010, , .		1
6	Composition dependence of electronic structure and optical properties of Hf1â^'xSixOy gate dielectrics. Journal of Applied Physics, 2008, 104, 104116.	2.5	23
7	Deposition and growth kinetics studies of thin zirconium dioxide films by UVILS-CVD. Applied Surface Science, 2007, 253, 7942-7946.	6.1	2
8	Hf1â^'xSixOy dielectric films deposited by UV-photo-induced chemical vapour deposition (UV-CVD). Applied Surface Science, 2007, 253, 7869-7873.	6.1	19
9	Development and application of UV excimer lamps from 354nm -126nm. , 2006, , .		3
10	Enhancement of luminescence from encapsulated Si nanocrystals in SiO2 with rapid thermal anneals. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 203-209.	1.4	9
11	Growth of titanium silicate thin films by photo-induced chemical vapor deposition. Thin Solid Films, 2004, 453-454, 167-171.	1.8	20
12	Surface modification of polyimide with excimer UV radiation at wavelength of 126 nm. Thin Solid Films, 2004, 453-454, 3-6.	1.8	20
13	Interface of ultrathin HfO2 films deposited by UV-photo-CVD. Thin Solid Films, 2004, 453-454, 203-207.	1.8	56
14	Electrical characterization of photo-oxidized Si1â^'xâ^'yGexCy films. Microelectronic Engineering, 2004, 72, 218-222.	2.4	2
15	Palladium nanoparticles on silicon by photo-reduction using 172 nm excimer UV lamps. Applied Surface Science, 2004, 226, 7-11.	6.1	21
16	FTIR and XPS investigation of Er-doped SiO2–TiO2 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 209-213.	3.5	70
17	Investigation of TiO2-doped HfO2 thin films deposited by photo-CVD. Thin Solid Films, 2003, 428, 263-268.	1.8	50
18	Interface of tantalum oxide films on silicon by UV annealing at low temperature. Thin Solid Films, 2003, 428, 248-252.	1.8	10

#	Article	IF	CITATIONS
19	High-k dielectrics by UV photo-assisted chemical vapour deposition. Microelectronic Engineering, 2003, 66, 621-630.	2.4	20
20	Visible photoluminescence from nanocrystalline Ge grown at room temperature by photo-oxidation of SiGe using a 126 nm lamp. Applied Surface Science, 2003, 208-209, 364-368.	6.1	7
21	Photo-chemical production of gold nanoparticles in monolithic porous silica by using a novel excimer ultraviolet source. Inorganic Chemistry Communication, 2003, 6, 950-952.	3.9	9
22	The next twenty years. Nature Materials, 2003, 2, 563-565.	27.5	2
23	Characterisation of HfO2 deposited by photo-induced chemical vapour deposition. Thin Solid Films, 2003, 427, 391-396.	1.8	35
24	Rapid oxidation of silicon using 126 nm excimer radiation at low pressure. Applied Surface Science, 2003, 208-209, 369-373.	6.1	18
25	Development and Applications of UV Excimer Lamps. , 2003, , 161-199.		4
26	Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. Journal of Non-Crystalline Solids, 2002, 303, 134-138.	3.1	163
27	Photonic effects during low-temperature ultraviolet-assisted oxidation of SiGe. Journal of Electronic Materials, 2002, 31, 1325-1329.	2.2	2
28	Characterisation of TiO2 deposited by photo-induced chemical vapour deposition. Applied Surface Science, 2002, 186, 241-245.	6.1	35
29	(Ta2O5)1â^'x(TiO2)x deposited by photo-induced CVD using 222 nm excimer lamps. Applied Surface Science, 2002, 186, 246-250.	6.1	7
30	Rapid photo-oxidation of silicon at room temperature using 126 nm vacuum ultraviolet radiation. Applied Surface Science, 2002, 186, 64-68.	6.1	33
31	UV curing of optical fibre coatings using excimer lamps. Applied Surface Science, 2002, 186, 568-572.	6.1	52
32	Structural and electrical properties of tantalum oxide films grown by photo-assisted pulsed laser deposition. Applied Surface Science, 2002, 186, 40-44.	6.1	22
33	Characterisation of TiO2 films grown at low temperatures for alternative gate dielectric application. Materials Research Society Symposia Proceedings, 2001, 670, 1.	0.1	0
34	Photo-induced growth of dielectrics with excimer lamps. Solid-State Electronics, 2001, 45, 1413-1431.	1.4	66
35	Characteristic photoluminescence properties of Si nanocrystals in SiO2 fabricated by ion implantation and annealing. Solid-State Electronics, 2001, 45, 1487-1494.	1.4	29
36	Characterisation of ultraviolet annealed tantalum oxide films deposited by photo-CVD using 172 nm excimer lamp. Materials Science in Semiconductor Processing, 2001, 4, 313-317.	4.0	13

#	Article	IF	CITATIONS
37	<title>Photoinduced growth of dielectrics with excimer lamps</title> . , 2000, , .		3
38	Photo-Induced Growth of Low Dielectric Constant Porous Silica Film at Room Temperature. Materials Research Society Symposia Proceedings, 2000, 612, 5171.	0.1	1
39	Photo-induced Large Area Growth Of Dielectrics With Excimer Lamps. Materials Research Society Symposia Proceedings, 2000, 617, 441.	0.1	8
40	Photo-Induced Large Area Growth of Dielectrics With Excimer Lamps. Materials Research Society Symposia Proceedings, 2000, 624, 115.	0.1	0
41	Low temperature photoformation of tantalum oxide. Microelectronics Reliability, 2000, 40, 649-655.	1.7	19
42	Low dielectric constant porous silica films formed by photo-induced sol–gel processing. Materials Science in Semiconductor Processing, 2000, 3, 345-349.	4.0	28
43	Lifetime investigation of excimer UV sources. Applied Surface Science, 2000, 168, 296-299.	6.1	39
44	Photo-deposition of tantalum pentoxide film using 222 nm excimer lamps. Applied Surface Science, 2000, 168, 307-311.	6.1	7
45	Formation of silicon dioxide layers during UV annealing of tantalum pentoxide film. Applied Surface Science, 2000, 168, 312-315.	6.1	5
46	Deposition and annealing of tantalum pentoxide films using 172 nm excimer lamp. Applied Surface Science, 2000, 154-155, 382-386.	6.1	11
47	Ultraviolet annealing of thin films grown by pulsed laser deposition. Applied Surface Science, 2000, 154-155, 17-21.	6.1	10
48	Titanium dioxide films prepared by photo-induced sol–gel processing using 172 nm excimer lamps. Surface and Coatings Technology, 2000, 125, 424-427.	4.8	43
49	Photo-induced preparation of (Ta2O5)1â^'x(TiO2)x dielectric thin films using sol–gel processing with xenon excimer lamps. Applied Surface Science, 2000, 168, 13-16.	6.1	14
50	Thin tantalum and tantalum oxide films grown by pulsed laser deposition. Applied Surface Science, 2000, 168, 234-238.	6.1	35
51	Ultrathin silicon dioxide films grown by photo-oxidation of silicon using 172 nm excimer lamps. Applied Surface Science, 2000, 168, 288-291.	6.1	25
52	Ultrathin high-quality tantalum pentoxide films grown by photoinduced chemical vapor deposition. Applied Physics Letters, 2000, 77, 3574-3576.	3.3	26
53	Characterization of Lead-Zirconate-Titanate (PZT) Films Formed by Photo-Decomposition of Metal Organic Polymer. Japanese Journal of Applied Physics, 1999, 38, L393-L394.	1.5	15
54	Ultraviolet annealing of tantalum oxide films grown by photo-induced chemical vapour deposition. Journal Physics D: Applied Physics, 1999, 32, L91-L95.	2.8	14

#	Article	IF	CITATIONS
55	Vacuum ultraviolet annealing of hydroxyapatite films grown by pulsed laser deposition. Journal of Applied Physics, 1999, 85, 8410-8414.	2.5	28
56	Characteristics of dielectric layers formed by low-temperature vacuum ultraviolet-assisted oxidation of SiGe layers. Journal of Materials Research, 1999, 14, 3525-3529.	2.6	6
57	Excimer lamp-induced decomposition of platinum acetylacetonate films for electroless copper plating. Solid-State Electronics, 1999, 43, 1107-1111.	1.4	7
58	UV intensity measurement of 308 nm excimer lamp using chemical actinometer. Applied Surface Science, 1999, 138-139, 315-319.	6.1	24
59	Growth of tantalum pentoxide film by pulsed laser deposition. Applied Surface Science, 1999, 138-139, 320-324.	6.1	57
60	Kinetic study of 222 nm excimer lamp induced decomposition of palladium-acetate films. Applied Surface Science, 1999, 138-139, 401-407.	6.1	14
61	Enhanced magnetoresistance behaviour in CeO2 buffered LaCaMnO films on Si. Applied Surface Science, 1999, 138-139, 563-568.	6.1	4
62	Vacuum ultraviolet annealing of thin films grown by pulsed laser deposition. Applied Surface Science, 1999, 138-139, 587-592.	6.1	20
63	Characteristics of dielectric layers grown on Ge by low temperature vacuum ultraviolet-assisted oxidation. Applied Physics Letters, 1999, 75, 1261-1263.	3.3	48
64	Investigations of photo-induced decomposition of palladium acetate for electroless copper plating. Thin Solid Films, 1998, 318, 234-238.	1.8	26
65	Thin tantalum oxide films prepared by 172 nm Excimer lamp irradiation using sol–gel method. Thin Solid Films, 1998, 318, 252-256.	1.8	39
66	Thin tantalum pentoxide films deposited by photo-induced CVD. Thin Solid Films, 1998, 336, 340-343.	1.8	49
67	UV light-induced deposition of low dielectric constant organic polymer for interlayer dielectrics. Optical Materials, 1998, 9, 251-254.	3.6	21
68	Growth of perovskite manganite oxide thin films by PLD. Applied Surface Science, 1998, 127-129, 410-417.	6.1	11
69	Efficient Xel* excimer ultraviolet sources from a dielectric barrier discharge. Journal of Applied Physics, 1998, 84, 1174-1178.	2.5	69
70	Formation of High Quality Tantalum Oxide Thin Films at 400°C by 172 nm Radiation. Japanese Journal of Applied Physics, 1998, 37, L27-L29.	1.5	32
71	Stress effects induced in SiGe strained layers by low-temperature ultraviolet-assisted oxidation. Journal of Applied Physics, 1998, 83, 1770-1772.	2.5	5
72	Incongruent transfer related to surface segregation in pulsed-laser-deposited La–Ca–Mn–O films. Applied Physics Letters, 1998, 73, 2745-2747.	3.3	16

#	Article	IF	CITATIONS
73	Stress effect and enhanced magnetoresistance inLa0.67Ca0.33MnO3â~îfilms. Physical Review B, 1998, 58, 14143-14146.	3.2	19
74	Characteristics of high quality tantalum oxide films deposited by photoinduced chemical vapor deposition. Applied Physics Letters, 1998, 73, 2299-2301.	3.3	47
75	Mechanisms of droplet formation in pulsed laser growth of thin oxide films. , 1998, , .		1
76	Challenges in the Oxidation of Strained SiGe Layers. , 1998, , 461-475.		5
77	Phase segregation and giant magnetoresistance behavior in as-deposited Co-Ag film grown by pulsed laser deposition. Journal of Applied Physics, 1997, 81, 5211-5213.	2.5	2
78	Low Temperature Si Oxidation with Excimer Lamp Sources. Materials Research Society Symposia Proceedings, 1997, 470, 343.	0.1	7
79	Development of Large area Excimer VUV and UV Sources from a Dielectric Barrier Discharge. Materials Research Society Symposia Proceedings, 1997, 471, 53.	0.1	6
80	Low temperature photo-oxidation of silicon using a xenon excimer lamp. Applied Physics Letters, 1997, 71, 2964-2966.	3.3	50
81	Ultraviolet induced mechanisms in oxide film formation. Applied Surface Science, 1997, 109-110, 538-543.	6.1	7
82	Growth of giant magnetoresistance metallic granular CoAg films by pulsed laser deposition. Journal of Magnetism and Magnetic Materials, 1997, 165, 330-333.	2.3	12
83	New large area ultraviolet lamp sources and their applications. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 349-356.	1.4	83
84	Enhanced magnetoresistance in Laî—,Caî—,Mnî—,O films on Si substrates using YBaCuO/CeO2 heterostructures. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1231-1232.	1.2	0
85	Giant magnetoresistance behaviour in in-situ La0.60Sr0.40MnO3 films grown on Si substrates by pulsed laser deposition. Applied Surface Science, 1997, 109-110, 350-353.	6.1	25
86	VUV light-induced decomposition of palladium acetate films for electroless copper plating. Applied Surface Science, 1997, 109-110, 487-492.	6.1	26
87	Efficient excimer ultraviolet sources from a dielectric barrier discharge in rareâ€gas/halogen mixtures. Journal of Applied Physics, 1996, 80, 633-638.	2.5	105
88	Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of siliconâ€germanium. Applied Physics Letters, 1996, 69, 1506-1508.	3.3	58
89	Microstructure of Pulsed-Laser Deposited Pzt on Polished and Annealed Mgo Substrates. Materials Research Society Symposia Proceedings, 1996, 433, 157.	0.1	0
90	Evolution of the morphology of annealed, bulk mgo (100) substrate surfaces. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 162-167.	3.5	6

#	Article	IF	CITATIONS
91	Energy-dispersive mass spectrometry of high energy ions generated during KrF excimer and frequency-doubled Nd:YAG laser ablation of metals. Applied Surface Science, 1996, 96-98, 227-232.	6.1	21
92	Decomposition mechanisms of thin palladium acetate film with excimer UV radiation. Applied Surface Science, 1996, 96-98, 399-404.	6.1	59
93	Kinetic energy distributions of ions ejected during laser ablation of lead zirconate titanate and their correlation to deposition of ferroelectric thin films. Applied Surface Science, 1996, 96-98, 769-774.	6.1	14
94	Pulsed laser deposition of novel materials for thin film solid oxide fuel cell applications: Ce 0.9 Gd 0.1 O 1.95 , La 0.7 Sr 0.3 CoO y and La 0.7 Sr 0.3 Co 0.2 Fe 0.8 O y. Applied Surface Science, 1996, 96-98, 795-801.	6.1	36
95	Pulsed-laser deposited ZnO for device applications. Applied Surface Science, 1996, 96-98, 811-818.	6.1	93
96	Thin film growth by pulsed laser deposition. Ceramics International, 1996, 22, 429-434.	4.8	39
97	Effect of trivalent ion composition on the magnetoresistance behavior of LaxNd0.6â^'xSr0.40MnO3â^'δfilms. Applied Physics Letters, 1996, 69, 3599-3601.	3.3	6
98	Transport properties and giant magnetoresistance behavior in Laâ€Ndâ€Srâ€Mnâ€O films. Applied Physics Letters, 1996, 69, 1154-1156.	3.3	16
99	Kinetic energy distributions of ions ejected during laser ablation of lead zirconate titanate and their correlation to deposition of ferroelectric thin films. , 1996, , 769-774.		1
100	Evolution of the morphology of annealed, bulk MgO (100) substrate surfaces. , 1996, , 162-167.		0
101	Pulsed-laser deposited ZnO for device applications. , 1996, , 811-818.		0
102	Energy-dispersive mass spectrometry of high energy ions generated during KrF excimer and frequency-doubled Nd:YAG laser ablation of metals. , 1996, , 227-232.		0
103	Pulsed laser deposition of novel materials for thin film solid oxide fuel cell applications: Ce0.9Gd0.1O1.95, La0.7Sr0.3CoOy and La0.7Sr0.3Co0.2Fe0.8Oy. , 1996, , 795-801.		0
104	Characterisation of ionic species generated during ablation of Bi2Sr2Ca2Cu3O10 by frequency-doubled Nd:YAG laser irradiation. Applied Surface Science, 1995, 86, 50-58.	6.1	12
105	Effects of laser wavelength and fluence on the growth of ZnO thin films by pulsed laser deposition. Applied Surface Science, 1995, 86, 99-106.	6.1	74
106	SEM observations of YBCO on as-received and heat-treated MgO substrates. Applied Surface Science, 1995, 86, 134-139.	6.1	14
107	Growth of pure and doped cerium oxide thin film bilayers by pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 34, 192-198.	3.5	11
108	Low temperature UV oxidation of SiGe for preparation of Ge nanocrystals in SiO2. Thin Solid Films, 1995, 255, 290-294.	1.8	13

#	Article	IF	CITATIONS
109	ULSI dielectrics: low-temperature silicon dioxides. Materials Chemistry and Physics, 1995, 41, 266-274.	4.0	5
110	Low temperature synthesis of Ge nanocrystals in SiO2. Applied Physics Letters, 1994, 65, 3233-3235.	3.3	33
111	Rapid photochemical deposition of silicon dioxide films using an excimer lamp. Journal of Applied Physics, 1994, 76, 4372-4376.	2.5	33
112	Growth rate enhancement using ozone during rapid thermal oxidation of silicon. Applied Physics Letters, 1994, 65, 412-414.	3.3	37
113	Fluorine enhanced oxidation of silicon at low temperatures. Applied Physics Letters, 1994, 65, 1572-1574.	3.3	20
114	Growth and modeling of cwâ€UV induced oxidation of silicon. Journal of Applied Physics, 1994, 75, 227-231.	2.5	38
115	Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Applied Physics Letters, 1994, 65, 2963-2965.	3.3	264
116	Thin Film Growth by Pulsed Laser Deposition. , 1994, , 349-359.		2
117	<title>Photo-CVD of dielectric materials by pseudo-continuous excimer sources</title> . , 1994, , .		3
118	Thin film growth by pulsed laser deposition. , 1994, , 319-326.		0
119	Vacuum-Ultra-Violet and Ozone Induced Oxidation of Silicon and Silicon-Germanium. Japanese Journal of Applied Physics, 1993, 32, 6141-6146.	1.5	53
120	Low pressure photodeposition of silicon nitride films using a xenon excimer lamp. Applied Physics Letters, 1993, 63, 1757-1759.	3.3	43
121	Ozoneâ€induced rapid low temperature oxidation of silicon. Applied Physics Letters, 1993, 63, 2517-2519.	3.3	45
122	Synthesis of (BiPb)2Sr2Ca2Cu3O10superconducting thin films on MgO using a multilayered pulsed laser deposition method. Applied Physics Letters, 1993, 63, 3373-3375.	3.3	15
123	Laser ablation deposition of PbO/BiPbSrCaCuO. Applied Surface Science, 1992, 54, 154-159.	6.1	3
124	Low Temperature UV Growth of SiO2 in O2 and N2O. Materials Research Society Symposia Proceedings, 1991, 236, 371.	0.1	0
125	Laser-ablation deposition of uniform thin films of Bi2Sr2CaCu2Ox. Applied Surface Science, 1990, 46, 84-88.	6.1	22
126	Low temperature VUV enhanced growth of thin silicon dioxide films. Applied Surface Science, 1990, 46, 352-356.	6.1	19

3

#	Article	IF	CITATIONS
127	Geometric optimisation for the deposition of high temperature superconductors. Applied Surface Science, 1989, 43, 382-386.	6.1	6
128	Low temperature oxidation of crystalline silicon using excimer laser irradiation. Applied Surface Science, 1989, 36, 134-140.	6.1	16
129	Doping and Oxidation. , 1989, , 539-580.		3
130	Photoformation of dielectrics. Applied Physics A: Materials Science and Processing, 1988, 46, 241-241.	2.3	0
131	Ultrathin Silicon Dioxide Films: Photo-Induced Growth. Materials Research Society Symposia Proceedings, 1988, 129, 421.	0.1	1
132	Confirmation of the Wavelength Dependence of Silicon Oxidation Induced by Visible Radiation. , 1988, , 171-178.		2
133	Growth and Structure of Argon Laser Grown SiO2. , 1988, , 331-336.		0
134	Experimental Considerations. Springer Series in Materials Science, 1987, , 100-133.	0.6	0
135	Siliconâ€silicon dioxide interface: An infrared study. Journal of Applied Physics, 1987, 62, 3195-3200.	2.5	92
136	Photon ontrolled oxidation of silicon. Applied Physics Letters, 1987, 51, 1149-1151.	3.3	20
137	Structure of ultrathin silicon dioxide films. Applied Physics Letters, 1987, 50, 320-322.	3.3	47
138	Deconvolution of the infrared absorption peak of the vibrational stretching mode of silicon dioxide: Evidence for structural order?. Applied Physics Letters, 1987, 51, 418-420.	3.3	67
139	Photo-Oxidation of Silicon: Reaction Mechanisms and Film Structure. Materials Research Society Symposia Proceedings, 1987, 105, 23.	0.1	3
140	Laser Processing of Thin Films and Microstructures. Springer Series in Materials Science, 1987, , .	0.6	130
141	Laser-Assisted Oxidation and Nitridation. Springer Series in Materials Science, 1987, , 134-189.	0.6	1
142	Material Removal. Springer Series in Materials Science, 1987, , 236-271.	0.6	1
143	Interactions and Kinetics. Springer Series in Materials Science, 1987, , 15-99.	0.6	0

144 Optically Enhanced Oxidation. , 1987, , 409-426.

#	Article	IF	CITATIONS
145	Passivation by Laser Annealing and Melting. Springer Series in Materials Science, 1987, , 190-208.	0.6	Ο
146	Structural changes produced in silicon by intense 1â€î¼m ps pulses. Journal of Applied Physics, 1986, 60, 1169-1182.	2.5	23
147	Cross-Sectional Tem Characterization of Structural Changes Produced In Silicon By One Micron Picosecond Pulses. Materials Research Society Symposia Proceedings, 1985, 51, 213.	0.1	0
148	Semiconductor technology: Kinetics of pulsed laser annealing. Nature, 1985, 313, 100-100.	27.8	1
149	Pulsewidth-dependence of nonlinear energy deposition and redistribution in Si, GaAs and Ge during 1 μm picosecond irradiation. Journal of Luminescence, 1985, 30, 272-289.	3.1	18
150	Spatial And Temporal Resolution Of The Nonlinear Optical Properties And Melt Dynamics Of Si At $1\ \hat{l}$ 4m. , 1985, , .		4
151	Temporally resolved imaging of silicon surfaces melted with intense picosecond 1â€î¼m laser pulses. Applied Physics Letters, 1985, 46, 366-368.	3.3	16
152	PULSEWIDTH-DEPENDENCE OF NONLINEAR ENERGY DEPOSITION AND REDISTRIBUTION IN Si, GaAs AND Ge DURING 1 $\rm \hat{1}4m$ PICOSECOND IRRADIATION. , 1985, , 272-289.		0
153	Various phase transitions and changes in surface morphology of crystalline silicon induced by 4–260â€ps pulses of 1â€Î¼m radiation. Applied Physics Letters, 1984, 45, 80-82.	3.3	41
154	Nonlinear-optical energy regulation by nonlinear refraction and absorption in silicon. Optics Letters, 1984, 9, 291.	3.3	65
155	Spatially and Temporally Resolved Reflectivity Profiles of Crystalline Silicon Irradiated by 48 Ps Pulses of One-Micron Laser Radiation. Materials Research Society Symposia Proceedings, 1984, 35, 107.	0.1	0
156	Laser Assisted Pyrolytic Growth and Photochemical Deposition of Thin Oxide Films. Springer Series in Chemical Physics, 1984, , 274-287.	0.2	6
157	Optical Regulation Using Crystalline Silicon. Springer Series in Chemical Physics, 1984, , 50-53.	0.2	2
158	Laser processing of silicon. Nature, 1983, 303, 481-486.	27.8	24
159	Incorporation of oxygen atoms into As+ implanted silicon during cw CO2 laser annealing in O2. Applied Physics A: Solids and Surfaces, 1983, 31, 71-74.	1.4	9
160	Laserâ€enhanced oxidation of Si. Applied Physics Letters, 1983, 42, 728-730.	3.3	57
161	Incorporation of carbon dioxide laserâ€grown oxide layers into conventional metalâ€oxideâ€silicon devices. Journal of Applied Physics, 1983, 54, 3561-3565.	2.5	16
162	A review of laser beam applications for processing silicon. Contemporary Physics, 1983, 24, 461-490.	1.8	13

#	Article	IF	CITATIONS
163	Initial Obsevation of the Crystal-Amorphous Transition and the Formation of Ripple Patterns on Silicon Induced by 7 ps Pulses at 1.05 Âμm. Materials Research Society Symposia Proceedings, 1983, 23, 203.	0.1	4