
## Michael R Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11811263/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cholesterol-Lowering Intervention Decreases mTOR Complex 2 Signaling and Enhances Antitumor<br>Immunity. Clinical Cancer Research, 2022, 28, 414-424.                                                         | 3.2 | 14        |
| 2  | Antioxidant functions of DHHC3 suppress anti-cancer drug activities. Cellular and Molecular Life Sciences, 2021, 78, 2341-2353.                                                                               | 2.4 | 12        |
| 3  | miR-1227 Targets SEC23A to Regulate the Shedding of Large Extracellular Vesicles. Cancers, 2021, 13, 5850.                                                                                                    | 1.7 | 2         |
| 4  | Large and small extracellular vesicles released by glioma cells <i>in vitro</i> and <i>in vivo</i> .<br>Journal of Extracellular Vesicles, 2020, 9, 1689784.                                                  | 5.5 | 57        |
| 5  | Comprehensive palmitoylâ€proteomic analysis identifies distinct protein signatures for large and small<br>cancerâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2020, 9, 1764192.        | 5.5 | 37        |
| 6  | 27-Hydroxycholesterol Impairs Plasma Membrane Lipid Raft Signaling as Evidenced by Inhibition of<br>IL6–JAK–STAT3 Signaling in Prostate Cancer Cells. Molecular Cancer Research, 2020, 18, 671-684.           | 1.5 | 35        |
| 7  | Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non- <i>S</i> -Acylated<br>Proteins and Enables Deep <i>S</i> -Acylproteomic Analysis. Analytical Chemistry, 2019, 91, 9858-9866. | 3.2 | 32        |
| 8  | Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer. Clinical Proteomics, 2019, 16, 15.                                          | 1.1 | 15        |
| 9  | Serum cholesterol and risk of high-grade prostate cancer: results from the REDUCE study. Prostate Cancer and Prostatic Diseases, 2018, 21, 252-259.                                                           | 2.0 | 71        |
| 10 | Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Research, 2018, 78,<br>6086-6097.                                                                                         | 0.4 | 49        |
| 11 | Personalization of prostate cancer therapy through phosphoproteomics. Nature Reviews Urology, 2018, 15, 483-497.                                                                                              | 1.9 | 25        |
| 12 | Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. Journal of Extracellular Vesicles, 2018, 7, 1505403.                                                 | 5.5 | 286       |
| 13 | CYP27A1 Loss Dysregulates Cholesterol Homeostasis in Prostate Cancer. Cancer Research, 2017, 77, 1662-1673.                                                                                                   | 0.4 | 83        |
| 14 | Evidence for Feedback Regulation Following Cholesterol Lowering Therapy in a Prostate Cancer<br>Xenograft Model. Prostate, 2017, 77, 446-457.                                                                 | 1.2 | 20        |
| 15 | High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology, 2017, 14, 305-316.         | 1.5 | 43        |
| 16 | The current evidence on statin use and prostate cancer prevention: are we there yet?. Nature Reviews<br>Urology, 2017, 14, 107-119.                                                                           | 1.9 | 111       |
| 17 | Universal Solid-Phase Reversible Sample-Prep for Concurrent Proteome and N-Glycome<br>Characterization. Journal of Proteome Research, 2016, 15, 891-899.                                                      | 1.8 | 5         |
| 18 | Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget, 2015, 6, 11327-11341.                                           | 0.8 | 289       |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes.<br>Seminars in Cell and Developmental Biology, 2015, 40, 41-51.                    | 2.3 | 675       |
| 20 | Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Scientific Reports, 2015, 5, 12136.                                  | 1.6 | 48        |
| 21 | Assess the expression of ubiquitin specific protease USP2a for bladder cancer diagnosis. BMC Urology, 2015, 15, 80.                                                                    | 0.6 | 12        |
| 22 | Technologies and Challenges in Proteomic Analysis of Protein S-acylation. Journal of Proteomics and Bioinformatics, 2014, 07, 256-263.                                                 | 0.4 | 18        |
| 23 | Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells. Cancer Biology and Therapy, 2014, 15, 409-418.                                                        | 1.5 | 64        |
| 24 | Extracellular vesicles shed from gefitinib-resistant nonsmall cell lung cancer regulate the tumor microenvironment. Proteomics, 2014, 14, 1845-1856.                                   | 1.3 | 44        |
| 25 | Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Communication and Signaling, 2014, 12, 44.                 | 2.7 | 24        |
| 26 | Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer. Asian<br>Journal of Andrology, 2014, 16, 530.                                                | 0.8 | 12        |
| 27 | Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. Journal of Pathology, 2013, 231, 77-87. | 2.1 | 93        |
| 28 | Statin Drugs and Prostate Cancer: Time to Consider Proactive Strategies in Patients. Journal of<br>Urology, 2013, 189, 1192-1193.                                                      | 0.2 | 1         |
| 29 | Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle, 2013, 12, 3526-3536.                                                                                | 1.3 | 189       |
| 30 | The Role of Cholesterol in Prostate Cancer. , 2013, , 65-83.                                                                                                                           |     | 0         |
| 31 | Caveolin-1 and Prostate Cancer Progression. Advances in Experimental Medicine and Biology, 2012, 729, 95-110.                                                                          | 0.8 | 33        |
| 32 | Large Oncosomes in Human Prostate Cancer Tissues and in the Circulation of Mice with Metastatic<br>Disease. American Journal of Pathology, 2012, 181, 1573-1584.                       | 1.9 | 321       |
| 33 | Cholesterol and prostate cancer. Current Opinion in Pharmacology, 2012, 12, 751-759.                                                                                                   | 1.7 | 218       |
| 34 | Impact of Circulating Cholesterol Levels on Growth and Intratumoral Androgen Concentration of Prostate Tumors. PLoS ONE, 2012, 7, e30062.                                              | 1.1 | 108       |
| 35 | DIAPH3 governs the cellular transition to the amoeboid tumour phenotype. EMBO Molecular Medicine, 2012, 4, 743-760.                                                                    | 3.3 | 92        |
| 36 | The Response of the Prostate to Circulating Cholesterol: Activating Transcription Factor 3 (ATF3) as a Prominent Node in a Cholesterol-Sensing Network. PLoS ONE, 2012, 7, e39448.     | 1.1 | 9         |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Complex Interplay Between Cholesterol and Prostate Malignancy. Urologic Clinics of North<br>America, 2011, 38, 243-259.                                                                                                                   | 0.8 | 61        |
| 38 | Cholesterol and benign prostate disease. Differentiation, 2011, 82, 244-252.                                                                                                                                                                  | 1.0 | 43        |
| 39 | Proteomic analysis of palmitoylated platelet proteins. Blood, 2011, 118, e62-e73.                                                                                                                                                             | 0.6 | 105       |
| 40 | An hTERT-immortalized human urothelial cell line that responds to anti-proliferative factor. In Vitro<br>Cellular and Developmental Biology - Animal, 2011, 47, 2-9.                                                                          | 0.7 | 40        |
| 41 | A metabolic perturbation by U0126 identifies a role for glutamine in resveratrol-induced cell death.<br>Cancer Biology and Therapy, 2011, 12, 966-977.                                                                                        | 1.5 | 23        |
| 42 | Quantitative Proteomics Identifies a β-Catenin Network as an Element of the Signaling Response to<br>Frizzled-8 Protein-Related Antiproliferative Factor. Molecular and Cellular Proteomics, 2011, 10,<br>M110.007492.                        | 2.5 | 31        |
| 43 | Proteome Scale Characterization of Human S-Acylated Proteins in Lipid Raft-enriched and Non-raft<br>Membranes. Molecular and Cellular Proteomics, 2010, 9, 54-70.                                                                             | 2.5 | 252       |
| 44 | Quantitative Proteomics Analysis Reveals Molecular Networks Regulated by Epidermal Growth Factor<br>Receptor Level in Head and Neck Cancer. Journal of Proteome Research, 2010, 9, 3073-3082.                                                 | 1.8 | 26        |
| 45 | Suppression of aberrant transient receptor potential cation channel, subfamily V, member 6<br>expression in hyperproliferative colonic crypts by dietary calcium. American Journal of Physiology -<br>Renal Physiology, 2010, 299, G593-G601. | 1.6 | 31        |
| 46 | Oncosome Formation in Prostate Cancer: Association with a Region of Frequent Chromosomal Deletion in Metastatic Disease. Cancer Research, 2009, 69, 5601-5609.                                                                                | 0.4 | 325       |
| 47 | Heterogeneous Nuclear Ribonucleoprotein K Is a Novel Regulator of Androgen Receptor Translation.<br>Cancer Research, 2009, 69, 2210-2218.                                                                                                     | 0.4 | 51        |
| 48 | An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease spread and epithelial Akt activation. Cell Cycle, 2009, 8, 2420-2424.                                                                        | 1.3 | 141       |
| 49 | Ezetimibe Is an Inhibitor of Tumor Angiogenesis. American Journal of Pathology, 2009, 174, 1017-1026.                                                                                                                                         | 1.9 | 100       |
| 50 | Proteomic approaches to the analysis of multiprotein signaling complexes. Proteomics, 2008, 8, 832-851.                                                                                                                                       | 1.3 | 45        |
| 51 | Do the cholesterol-lowering properties of statins affect cancer risk?. Trends in Endocrinology and Metabolism, 2008, 19, 113-121.                                                                                                             | 3.1 | 109       |
| 52 | Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle, 2008, 7, 2257-2267.                                                                                                                          | 1.3 | 80        |
| 53 | Cholesterol and Cholesterol-Rich Membranes in Prostate Cancer: An Update. Tumori, 2008, 94, 633-639.                                                                                                                                          | 0.6 | 60        |
| 54 | Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biology and Therapy, 2007, 6, 1269-1274.                                                              | 1.5 | 47        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Phosphoinositide 3-Kinase-independent Non-genomic Signals Transit from the Androgen Receptor to<br>Akt1 in Membrane Raft Microdomains. Journal of Biological Chemistry, 2007, 282, 29584-29593.         | 1.6 | 78        |
| 56 | Cholesterol Sensitivity of Endogenous and Myristoylated Akt. Cancer Research, 2007, 67, 6238-6246.                                                                                                      | 0.4 | 114       |
| 57 | Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes.<br>Steroids, 2007, 72, 210-217.                                                                              | 0.8 | 55        |
| 58 | The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO<br>Journal, 2007, 26, 4523-4534.                                                                    | 3.5 | 116       |
| 59 | Cholesterol, Cell Signaling, and Prostate Cancer. , 2007, , 119-137.                                                                                                                                    |     | 1         |
| 60 | The role of cholesterol in prostate cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 379-385.                                                                                 | 1.3 | 124       |
| 61 | Marked Disturbance of Calcium Homeostasis in Mice With Targeted Disruption of the Trpv6 Calcium<br>Channel Gene. Journal of Bone and Mineral Research, 2006, 22, 274-285.                               | 3.1 | 251       |
| 62 | A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells. Proteomics, 2005, 5, 4733-4742.                                           | 1.3 | 60        |
| 63 | Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends in Endocrinology and Metabolism, 2005, 16, 273-279.                                                       | 3.1 | 88        |
| 64 | Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. Journal of Clinical Investigation, 2005, 115, 959-968.                                   | 3.9 | 264       |
| 65 | Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. Journal of Clinical Investigation, 2005, 115, 959-968.                                   | 3.9 | 454       |
| 66 | Involvement of Cholesterol-Rich Lipid Rafts in Interleukin-6-Induced Neuroendocrine Differentiation of LNCaP Prostate Cancer Cells. Endocrinology, 2004, 145, 613-619.                                  | 1.4 | 70        |
| 67 | HER2/HER3 heterodimers in prostate cancer. Cancer Cell, 2004, 6, 427-428.                                                                                                                               | 7.7 | 24        |
| 68 | Cholesterol and prostate cancer. Journal of Cellular Biochemistry, 2004, 91, 54-69.                                                                                                                     | 1.2 | 237       |
| 69 | Heparin-Binding Epidermal Growth Factor-Like Growth Factor Stimulates Androgen-Independent<br>Prostate Tumor Growth and Antagonizes Androgen Receptor Function. Endocrinology, 2002, 143,<br>4599-4608. | 1.4 | 55        |
| 70 | Calcium-Selective Ion Channel, CaT1, Is Apically Localized in Gastrointestinal Tract Epithelia and Is<br>Aberrantly Expressed in Human Malignancies. Laboratory Investigation, 2002, 82, 1755-1764.     | 1.7 | 222       |
| 71 | Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Research, 2002, 62, 2227-31.                                                                               | 0.4 | 249       |
| 72 | CaT1 Expression Correlates with Tumor Grade in Prostate Cancer. Biochemical and Biophysical<br>Research Communications, 2001, 282, 729-734.                                                             | 1.0 | 165       |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Vascular Endothelial Growth Factor-Mediated Autocrine Stimulation of Prostate Tumor Cells<br>Coincides with Progression to a Malignant Phenotype. American Journal of Pathology, 2001, 159,<br>651-659. | 1.9 | 90        |
| 74 | A novel method for implantation of LNCaP prostate tumor cells under the renal capsule. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 360-362.                                         | 0.7 | 3         |
| 75 | AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. American Journal of Physiology - Cell Physiology, 1999, 277, C294-C301.                                              | 2.1 | 87        |
| 76 | Angiogenic switch and vascular stability in human Leydig cell tumours. Angiogenesis, 1999, 3, 231-240.                                                                                                  | 3.7 | 9         |
| 77 | Plasma levels of vascular endothelial growth factor are increased in patients with metastatic prostate cancer. Urology, 1999, 54, 523-527.                                                              | 0.5 | 245       |
| 78 | Heparin-binding EGF-like growth factor in the human prostate: Synthesis predominantly by interstitial and vascular smooth muscle cells and action as a carcinoma cell mitogen. , 1998, 68, 328-338.     |     | 38        |
| 79 | Extracellular calcium influx stimulates metalloproteinase cleavage and secretion of heparin-binding<br>EGF-like growth factor independently of protein kinase C. , 1998, 69, 143-153.                   |     | 103       |
| 80 | Temperature-controlled laser photocoagulation of soft tissue: In vivo evaluation using a tissue welding model. Lasers in Surgery and Medicine, 1996, 18, 335-344.                                       | 1.1 | 78        |
| 81 | Human albumin solder supplemented with TGF-Î21 accelerates healing following laser welded wound closure. Lasers in Surgery and Medicine, 1996, 19, 360-368.                                             | 1.1 | 60        |
| 82 | Human albumin solder supplemented with TGF-β1 accelerates healing following laser welded wound closure. , 1996, 19, 360.                                                                                |     | 2         |
| 83 | Phenotypic and Cytogenetic Characterization of Human Bladder Urothelia Expanded in Vitro. Journal of Urology, 1994, 152, 665-670.                                                                       | 0.2 | 230       |