Alan Werker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11809193/publications.pdf

Version: 2024-02-01

172457 223800 3,191 47 29 46 citations h-index g-index papers 47 47 47 2857 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modelling Mixed Microbial Culture Polyhydroxyalkanoate Accumulation Bioprocess towards Novel Methods for Polymer Production Using Dilute Volatile Fatty Acid Rich Feedstocks. Bioengineering, 2022, 9, 125.	3.5	4
2	Quantification of polyhydroxyalkanoate accumulated in waste activated sludge. Water Research, 2022, 221, 118795.	11.3	14
3	Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges. Bioresource Technology, 2021, 327, 124790.	9.6	60
4	Simultaneous nitrification and denitrification in microbial community-based polyhydroxyalkanoate production. Bioresource Technology, 2021, 337, 125420.	9.6	8
5	Mixed-culture polyhydroxyalkanoate (PHA) production integrated into a food-industry effluent biological treatment: A pilot-scale evaluation. Journal of Environmental Chemical Engineering, 2020, 8, 104469.	6.7	33
6	Mechanical Stability of Polyhydroxyalkanoate (PHA)-Based Wood Plastic Composites (WPCs). Journal of Polymers and the Environment, 2020, 28, 1571-1577.	5.0	10
7	Understanding the effect of copolymer content on the processability and mechanical properties of polyhydroxyalkanoate (PHA)/wood composites. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105437.	7.6	28
8	Polyhydroxyalkanoate (PHA) Bioplastics from Organic Waste. , 2019, , 615-638.		12
9	Insights into the biodegradation of PHA / wood composites: Micro- and macroscopic changes. Sustainable Materials and Technologies, 2019, 21, e00099.	3.3	22
10	Experimental data for extrusion processing and tensile properties of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) polymer and wood fibre reinforced PHBV biocomposites. Data in Brief, 2019, 22, 687-692.	1.0	9
11	Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering. Polymer Testing, 2019, 73, 214-221.	4.8	36
12	Application of dissolved oxygen (DO) level control for polyhydroxyalkanoate (PHA) accumulation with concurrent nitrification in surplus municipal activated sludge. New Biotechnology, 2019, 50, 37-43.	4.4	21
13	Extrusion of wood fibre reinforced poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) biocomposites: Statistical analysis of the effect of processing conditions on mechanical performance. Polymer Degradation and Stability, 2019, 159, 1-14.	5.8	34
14	Acclimation Process for Enhancing Polyhydroxyalkanoate Accumulation in Activated-Sludge Biomass. Waste and Biomass Valorization, 2019, 10, 1065-1082.	3.4	9
15	Mechanical performance and long-term indoor stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) modified by non-reactive additives. European Polymer Journal, 2018, 98, 337-346.	5.4	27
16	Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 2018, 58, 444-494.	10.9	134
17	Consistent production of high quality PHA using activated sludge harvested from full scale municipal wastewater treatment – PHARIO. Water Science and Technology, 2018, 78, 2256-2269.	2.5	40
18	Mechanical properties of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyvalerate)/wood flour composites: Effect of interface modifiers. Journal of Applied Polymer Science, 2018, 135, 46828.	2.6	18

#	Article	IF	CITATION
19	Wood-PHA Composites: Mapping Opportunities. Polymers, 2018, 10, 751.	4.5	59
20	Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnology, 2017, 37, 9-23.	4.4	182
21	A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnology, 2017, 35, 42-53.	4.4	118
22	Influence of temperature on mixed microbial culture polyhydroxyalkanoate production while treating a starch industry wastewater. Journal of Environmental Chemical Engineering, 2017, 5, 5067-5075.	6.7	29
23	Mixed culture polyhydroxyalkanoate-rich biomass assessment and quality control using thermogravimetric measurement methods. Polymer Degradation and Stability, 2017, 144, 110-120.	5.8	35
24	The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents. Bioengineering, 2017, 4, 20.	3.5	13
25	Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. Journal of Cleaner Production, 2016, 137, 1368-1381.	9.3	58
26	Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes. New Biotechnology, 2016, 33, 61-72.	4.4	37
27	Effect of additives on the melt rheology and thermal degradation of poly[(R)â€3â€hydroxybutyric acid]. Journal of Applied Polymer Science, 2015, 132, .	2.6	25
28	Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production. Environmental Science and Pollution Research, 2015, 22, 7281-7294.	5.3	45
29	Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Water Research, 2015, 77, 49-63.	11.3	100
30	The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 2014, 39, 397-442.	24.7	166
31	Fractionation of microbial populations in a PHA accumulating mixed culture and associated PHA content and composition. International Journal of Biological Macromolecules, 2014, 71, 53-58.	7. 5	9
32	Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnology, 2014, 31, 308-323.	4.4	55
33	Crystallisation and fractionation of selected polyhydroxyalkanoates produced from mixed cultures. New Biotechnology, 2014, 31, 345-356.	4.4	45
34	In-line monitoring of thermal degradation of PHA during melt-processing by Near-Infrared spectroscopy. New Biotechnology, 2014, 31, 357-363.	4.4	31
35	Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnology, 2014, 31, 383-393.	4.4	39
36	Thermal properties and crystallization behavior of fractionated blocky and random polyhydroxyalkanoate copolymers from mixed microbial cultures. Journal of Applied Polymer Science, 2014, 131, .	2.6	29

3

#	Article	IF	CITATION
37	Physicochemical and mechanical properties of mixed culture polyhydroxyalkanoate (PHBV). European Polymer Journal, 2013, 49, 904-913.	5.4	90
38	The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 2013, 38, 536-583.	24.7	372
39	Carbon-Rich Wastes as Feedstocks for Biodegradable Polymer (Polyhydroxyalkanoate) Production Using Bacteria. Advances in Applied Microbiology, 2013, 84, 139-200.	2.4	147
40	Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polymer Degradation and Stability, 2012, 97, 2301-2312.	5.8	80
41	Rapid quantification of intracellular PHA using infrared spectroscopy: An application in mixed cultures. Journal of Biotechnology, 2010, 150, 372-379.	3.8	69
42	Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Research, 2010, 44, 5196-5211.	11.3	138
43	Community Structure Evolution and Enrichment of Glycogen-Accumulating Organisms Producing Polyhydroxyalkanoates from Fermented Molasses. Applied and Environmental Microbiology, 2009, 75, 4676-4686.	3.1	52
44	Acidogenic fermentation of industrial wastewaters: Effects of chemostat retention time and pH on volatile fatty acids production. Biochemical Engineering Journal, 2008, 40, 492-499.	3.6	230
45	Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresource Technology, 2008, 99, 509-516.	9.6	316
46	Chlorinated-solvent-free gas chromatographic analysis of biomass containing polyhydroxyalkanoates. Water Research, 2008, 42, 2517-2526.	11.3	48
47	Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater. Water Science and Technology, 2008, 58, 323-330.	2.5	55