Klaus Brandenburg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11807868/publications.pdf

Version: 2024-02-01

		29994	62479
184	8,383	54	80
papers	citations	h-index	g-index
190	190	190	7358
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Frontiers in Pharmacology, 2018, 9, 281.	1.6	307
2	Biological activities of lipopolysaccharides are determined by the shape of their lipidâ€∫A portion. FEBS Journal, 2000, 267, 2008-2013.	0.2	279
3	Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Molecular Microbiology, 2008, 69, 491-502.	1.2	219
4	Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity. FEBS Journal, 2000, 267, 3032-3039.	0.2	164
5	Influence of the supramolecular structure of free lipid A on its biological activity. FEBS Journal, 1993, 218, 555-563.	0.2	160
6	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	2.1	140
7	The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1296-1303.	1.4	136
8	Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochemical Journal, 2004, 381, 527-536.	1.7	131
9	New Insights Into Endotoxin-Induced Activation of Macrophages: Involvement of a K+ Channel in Transmembrane Signaling. Journal of Immunology, 2001, 166, 1009-1015.	0.4	129
10	Biophysical Characterization of Lipopolysaccharide and Lipid A Inactivation by Lactoferrin. Biological Chemistry, 2001, 382, 1215-25.	1.2	122
11	Lipopolysaccharide-binding protein mediates CD14-independent intercalation of lipopolysaccharide into phospholipid membranes. FEBS Letters, 1996, 399, 267-271.	1.3	116
12	Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9147-9151.	3.3	112
13	Endotoxins: Relationships between Structure, Function, and Activity. Current Topics in Medicinal Chemistry, 2004, 4, 1127-1146.	1.0	111
14	New Antiseptic Peptides To Protect against Endotoxin-Mediated Shock. Antimicrobial Agents and Chemotherapy, 2010, 54, 3817-3824.	1.4	111
15	Biophysical Mechanisms of Endotoxin Neutralization by Cationic Amphiphilic Peptides. Biophysical Journal, 2011, 100, 2652-2661.	0.2	111
16	Phase behavior, supramolecular structure, and molecular conformation of lipopolysaccharide. Immunobiology, 1993, 187, 191-211.	0.8	110
17	Physical aspects of structure and function of membranes made from lipopolysaccharides and free lipid A. Biochimica Et Biophysica Acta - Biomembranes, 1984, 775, 225-238.	1.4	103
18	Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide. Biochemical Journal, 2005, 385, 135-143.	1.7	101

#	Article	IF	CITATIONS
19	Biophysical Characterization of Endotoxin Inactivation by NK-2, an Antimicrobial Peptide Derived from Mammalian NK-Lysin. Antimicrobial Agents and Chemotherapy, 2004, 48, 1593-1599.	1.4	100
20	Investigation into the fluidity of lipopolysaccharide and free lipid A membrane systems by Fourier-transform infrared spectroscopy and differential scanning calorimetry. FEBS Journal, 1990, 191, 229-236.	0.2	98
21	The physicochemistry of endotoxins in relation to bioactivity. International Journal of Medical Microbiology, 2007, 297, 341-352.	1.5	98
22	Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes, 2014, 5, 761-765.	4.3	94
23	Conformational studies of synthetic lipid A analogues and partial structures by infrared spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1329, 183-201.	1.4	91
24	The generalized endotoxic principle. European Journal of Immunology, 2003, 33, 1586-1592.	1.6	87
25	The Lipopolysaccharide of Brucella abortus BvrS/BvrR Mutants Contains Lipid A Modifications and Has Higher Affinity for Bactericidal Cationic Peptides. Journal of Bacteriology, 2005, 187, 5631-5639.	1.0	84
26	Structural Requirements of the <i>Pseudomonas </i> Quinolone Signal for Membrane Vesicle Stimulation. Journal of Bacteriology, 2009, 191, 3411-3414.	1.0	84
27	Physicochemical properties of bacterial glycopolymers in relation to bioactivity. Carbohydrate Research, 2003, 338, 2477-2489.	1.1	83
28	Divalent cations affect chain mobility and aggregate structure of lipopolysaccharide from Salmonella minnesota reflected in a decrease of its biological activity. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1715, 122-131.	1.4	81
29	Preclinical Investigations Reveal the Broad-Spectrum Neutralizing Activity of Peptide Pep19-2.5 on Bacterial Pathogenicity Factors. Antimicrobial Agents and Chemotherapy, 2013, 57, 1480-1487.	1.4	78
30	Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biological Chemistry, 2006, 387, 301-10.	1.2	77
31	Non-lamellar Structure and Negative Charges of Lipopolysaccharides Required for Efficient Folding of Outer Membrane Protein PhoE of Escherichia coli. Journal of Biological Chemistry, 1999, 274, 5114-5119.	1.6	75
32	A New Class of Synthetic Peptide Inhibitors Blocks Attachment and Entry of Human Pathogenic Viruses. Journal of Infectious Diseases, 2012, 205, 1654-1664.	1.9	75
33	Structural rearrangement of model membranes by the peptide antibiotic NK-2. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1669, 125-134.	1.4	74
34	Structural Polymorphisms of Rough Mutant Lipopolysaccharides Rd to Ra from Salmonella minnesota. Journal of Structural Biology, 1993, 110, 232-243.	1.3	72
35	Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT. FEBS Journal, 2002, 269, 1746-1752.	0.2	72
36	Rationale for the Design of Shortened Derivatives of the NK-lysin-derived Antimicrobial Peptide NK-2 with Improved Activity against Gram-negative Pathogens. Journal of Biological Chemistry, 2007, 282, 14719-14728.	1.6	72

3

#	Article	IF	CITATIONS
37	Antimicrobial peptides and their potential application in inflammation and sepsis. Critical Care, 2012, 16, 207.	2.5	71
38	Bacterial Endotoxin:Molecular Relationships Between Structure and Activity. Infectious Disease Clinics of North America, 1991, 5, 753-779.	1.9	69
39	Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 971-979.	1.4	67
40	Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins. FEBS Journal, 2002, 269, 5972-5981.	0.2	66
41	Phospholipids Inhibit Lipopolysaccharide (LPS)-Induced Cell Activation: A Role for LPS-Binding Protein. Journal of Immunology, 2005, 174, 1091-1096.	0.4	66
42	Temperature Dependence of the Binding of Endotoxins to the Polycationic Peptides Polymyxin B and Its Nonapeptide. Biophysical Journal, 2005, 88, 1845-1858.	0.2	65
43	Polymyxin B induces transient permeability fluctuations in asymmetric planar lipopolysaccharide/phospholipid bilayers. Biochemistry, 1992, 31, 631-638.	1.2	64
44	Bacterial Cell Wall Compounds as Promising Targets of Antimicrobial Agents I. Antimicrobial Peptides and Lipopolyamines. Current Drug Targets, 2012, 13, 1121-1130.	1.0	62
45	Cyclic antimicrobial peptides based on Limulus anti-lipopolysaccharide factor for neutralization of lipopolysaccharide. Biochemical Pharmacology, 2004, 68, 1297-1307.	2.0	61
46	Mechanism of interaction of optimized <i>Limulus</i> -derived cyclic peptides with endotoxins: thermodynamic, biophysical and microbiological analysis. Biochemical Journal, 2007, 406, 297-307.	1.7	61
47	Mechanisms of Action of Bactericidal/Permeability-Increasing Protein BPI on Reconstituted Outer Membranes of Gram-Negative Bacteriaâ€. Biochemistry, 1997, 36, 10311-10319.	1.2	60
48	Mechanisms of Action of the Bactericidal/Permeability-Increasing Protein BPI on Endotoxin and Phospholipid Monolayers and Aggregatesâ€. Biochemistry, 1997, 36, 10301-10310.	1.2	60
49	Infrared spectroscopy of glycolipids. Chemistry and Physics of Lipids, 1998, 96, 23-40.	1.5	60
50	Supramolecular structure of lipopolysaccharide and free lipid A under physiological conditions as determined by synchrotron small-angle X-ray diffraction. FEBS Journal, 1989, 186, 325-332.	0.2	59
51	Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration. Scientific Reports, 2016, 6, 31577.	1.6	59
52	Biophysical characterisation of lysozyme binding to LPS Re and lipid A. FEBS Journal, 1998, 258, 686-695.	0.2	56
53	Effects of Specific versus Nonspecific Ionic Interactions on the Structure and Lateral Organization of Lipopolysaccharides. Biophysical Journal, 2011, 100, 2169-2177.	0.2	56
54	Chemical Synthesis of a Glycolipid Library by a Solid-Phase Strategy Allows Elucidation of the Structural Specificity of Immunostimulation by Rhamnolipids. Chemistry - A European Journal, 2006, 12, 7116-7124.	1.7	55

#	Article	IF	CITATIONS
55	Thermodynamic Analysis of the Lipopolysaccharide-Dependent Resistance of Gram-Negative Bacteria against Polymyxin B. Biophysical Journal, 2007, 92, 2796-2805.	0.2	54
56	Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immunity, 2011, 17, 427-438.	1.1	54
57	Investigations into the polymorphism of lipid A from lipopolysaccharides of Escherichia coli and Salmonella minnesota by Fourier-transform infrared spectroscopy. FEBS Journal, 1987, 164, 159-169.	0.2	52
58	Structural and physicochemical requirements of endotoxins for the activation of arachidonic acid metabolism in mouse peritoneal macrophages in vitro. FEBS Journal, 1989, 179, 11-16.	0.2	52
59	Interaction of hemoglobin with enterobacterial lipopolysaccharide and lipid A. FEBS Journal, 2001, 268, 4233-4242.	0.2	50
60	Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochemistry, 2004, 5 , 1 .	4.4	50
61	Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against <i>Pseudomonas aeruginosa In Vitro</i> and <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 218-228.	1.4	50
62	Physicochemical characteristics of triacyl lipidâ€∫A partial structure OM-174 in relation to biological activity. FEBS Journal, 2000, 267, 3370-3377.	0.2	49
63	Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Scientific Reports, 2015, 5, 14292.	1.6	49
64	Bacterial lipopolysaccharides form physically cross-linked, two-dimensional gels in the presence of divalent cations. Soft Matter, 2015, 11, 6037-6044.	1.2	49
65	Mechanisms of endotoxin neutralization by synthetic cationic compounds. Journal of Endotoxin Research, 2006, 12, 261-277.	2.5	48
66	Physicochemical and Biological Analysis of Synthetic Bacterial Lipopeptides. Journal of Biological Chemistry, 2007, 282, 11030-11037.	1.6	48
67	Inhibition of Lipopolysaccharide- and Lipoprotein-Induced Inflammation by Antitoxin Peptide Pep19-2.5. Frontiers in Immunology, 2018, 9, 1704.	2.2	48
68	Synthetic anti-endotoxin peptides inhibit cytoplasmic LPS-mediated responses. Biochemical Pharmacology, 2017, 140, 64-72.	2.0	47
69	Lipopolysaccharide-binding protein-mediated interaction of lipid A from different origin with phospholipid membranes. Physical Chemistry Chemical Physics, 2000, 2, 4521-4528.	1.3	46
70	Molecular basis for membrane selectivity of NK-2, a potent peptide antibiotic derived from NK-lysin. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1612, 164-171.	1.4	46
71	Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide. FEBS Journal, 2004, 271, 2037-2046.	0.2	45
72	Biophysical study of the non-steroidal anti-inflammatory drugs (NSAID) ibuprofen, naproxen and diclofenac with phosphatidylserine bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2123-2131.	1.4	45

#	Article	IF	CITATIONS
73	Yersinia pseudotuberculosis and Yersinia pestis show increased outer membrane permeability to hydrophobic agents which correlates with lipopolysaccharide acyl-chain fluidity. Microbiology (United Kingdom), 1998, 144, 1517-1526.	0.7	43
74	The Acyl Group as the Central Element of the Structural Organization of Antimicrobial Lipopeptide. Journal of the American Chemical Society, 2007, 129, 1022-1023.	6.6	43
75	Physical mechanisms of bacterial survival revealed by combined grazing-incidence X-ray scattering and Monte Carlo simulation. Comptes Rendus Chimie, 2009, 12, 209-217.	0.2	42
76	Peptide-based treatment of sepsis. Applied Microbiology and Biotechnology, 2011, 90, 799-808.	1.7	41
77	The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study. Critical Care, 2013, 17, R3.	2.5	41
78	Influence of the lipid matrix on incorporation and function of LPS-free porin from Paracoccus denitrificans. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1190, 231-242.	1.4	40
79	Comparative analysis of selected methods for the assessment of antimicrobial and membrane-permeabilizing activity: a case study for lactoferricin derived peptides. BMC Microbiology, 2008, 8, 196.	1.3	40
80	Crucial roles of charged saccharide moieties in survival of gram negative bacteria against protamine revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations. Physical Review E, 2010, 81, 041901.	0.8	39
81	The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis. PLoS ONE, 2015, 10, e0143583.	1.1	39
82	Bartonella quintana lipopolysaccharide (LPS): structure and characteristics of a potent TLR4 antagonist for in-vitro and in-vivo applications. Scientific Reports, 2016, 6, 34221.	1.6	39
83	Reconstitution of the lipid matrix of the outer membrane of Gram-negative bacteria as asymmetric planar bilayer. Journal of Membrane Biology, 1989, 109, 95-103.	1.0	38
84	The Expression of Endotoxic Activity in the Limulus Test as Compared to Cytokine Production in Immune Cells. Current Medicinal Chemistry, 2009, 16, 2653-2660.	1.2	37
85	Physicochemical Interaction Study of Non-Steroidal Anti-Inflammatory Drugs with Dimyristoylphosphatidylethanolamine Liposomes. Letters in Drug Design and Discovery, 2010, 7, 50-56.	0.4	37
86	Physico-chemical analysis of lipid A fractions of lipopolysaccharide from Erwinia carotovora in relation to bioactivity. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 185-197.	1.4	36
87	Biophysical Characterization of Triacyl Monosaccharide Lipid A Partial Structures in Relation to Bioactivity. Biophysical Journal, 2002, 83, 322-333.	0.2	36
88	Biophysical characterization of synthetic rhamnolipids. FEBS Journal, 2006, 273, 5101-5112.	2.2	36
89	Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications. The Open Biochemistry Journal, 2015, 9, 49-72.	0.3	35
90	Interaction of Lipopolysaccharide and Phospholipid in Mixed Membranes: Solid-State 31P-NMR Spectroscopic and Microscopic Investigations. Biophysical Journal, 2008, 95, 1226-1238.	0.2	34

#	Article	IF	Citations
91	Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Biochemical and Biophysical Research Communications, 2006, 347, 1006-1010.	1.0	33
92	Physical interactions of fish protamine and antisepsis peptide drugs with bacterial membranes revealed by combination of specular x-ray reflectivity and grazing-incidence x-ray fluorescence. Physical Review E, 2013, 88, 012705.	0.8	33
93	Mechanical properties of interacting lipopolysaccharide membranes from bacteria mutants studied by specular and off-specular neutron scattering. Physical Review E, 2009, 80, 041929.	0.8	32
94	Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling. Scientific Reports, 2017, 7, 43134.	1.6	32
95	Investigation into the interaction of recombinant human serum albumin with Re-lipopolysaccharide and lipid A. Journal of Endotoxin Research, 2002, 8, 115-126.	2.5	32
96	Molecular basis for endotoxin neutralization by amphipathic peptides derived from the \hat{l}_{\pm} -helical cationic core-region of NK-lysin. Biophysical Chemistry, 2010, 150, 80-87.	1.5	31
97	LPS-neutralizing peptides reduce outer membrane vesicle-induced inflammatory responses. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1503-1513.	1.2	31
98	Peptide 19-2.5 Inhibits Heparan Sulfate-Triggered Inflammation in Murine Cardiomyocytes Stimulated with Human Sepsis Serum. PLoS ONE, 2015, 10, e0127584.	1.1	31
99	Domain V of m-calpain shows the potential to form an oblique-orientated α-helix, which may modulate the enzyme's activity via interactions with anionic lipid. FEBS Journal, 2002, 269, 5414-5422.	0.2	30
100	Investigations into the Membrane Interactions of m-Calpain Domain V. Biophysical Journal, 2005, 88, 3008-3017.	0.2	30
101	Temperature-Induced Changes in the Lipopolysaccharide of <i>Yersinia pestis </i> Affect Plasminogen Activation by the Pla Surface Protease. Infection and Immunity, 2010, 78, 2644-2652.	1.0	30
102	The synthetic antimicrobial peptide 19-2.5 attenuates septic cardiomyopathy and prevents down-regulation of SERCA2 in polymicrobial sepsis. Scientific Reports, 2016, 6, 37277.	1.6	29
103	Investigations into the mechanisms used by the C-terminal anchors of Escherichia coli penicillin-binding proteins 4, 5, 6 and 6b for membrane interaction. FEBS Journal, 2002, 269, 5821-5829.	0.2	28
104	Biophysical analysis of the interaction of granulysin-derived peptides with enterobacterial endotoxins. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2421-2431.	1.4	28
105	Current Understanding of Polymyxin B Applications in Bacteraemia/ Sepsis Therapy Prevention: Clinical, Pharmaceutical, Structural and Mechanistic Aspects. Anti-Infective Agents in Medicinal Chemistry, 2009, 8, 367-385.	0.6	28
106	Hypothermia enhances the biological activity of lipopolysaccharide by altering its fluidity state. FEBS Journal, 1998, 256, 325-333.	0.2	27
107	Physicochemical characterization of carboxymethyl lipid A derivatives in relation to biological activity. FEBS Journal, 2005, 272, 327-340.	2.2	27
108	Lack of new antiinfective agents: Passing into the pre-antibiotic age?. World Journal of Biological Chemistry, 2015, 6, 71.	1.7	27

#	Article	IF	CITATIONS
109	A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antiviral Research, 2014, 104, 23-33.	1.9	26
110	Antimicrobial endotoxinâ€neutralizing peptides promote keratinocyte migration <i>via</i> P2X7 receptor activation and accelerate wound healing <i>in vivo</i> British Journal of Pharmacology, 2018, 175, 3581-3593.	2.7	26
111	Cross-linked Hemoglobin Converts Endotoxically Inactive Pentaacyl Endotoxins into a Physiologically Active Conformation. Journal of Biological Chemistry, 2003, 278, 47660-47669.	1.6	25
112	Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide. Gut, 2015, 64, 222-232.	6.1	25
113	Novel integrated and portable endotoxin detection system based on an electrochemical biosensor. Analyst, The, 2015, 140, 654-660.	1.7	25
114	Cathelicidin and PMB neutralize endotoxins by multifactorial mechanisms including LPS interaction and targeting of host cell membranes. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,118$	3.3	25
115	Orientation Measurements on Ordered Multibilayers of Phospholipids and Sphingolipids from Synthetic and Natural Origin by ATR Fourier Transform Infrared Spectroscopy. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1986, 41, 453-467.	0.6	24
116	Biologically active lipid A antagonist embedded in a multilayered polyelectrolyte architecture. Biomaterials, 2006, 27, 1771-1777.	5.7	24
117	Electrostatic Potential Barrier in Asymmetric Planar Lipopolysaccharide/ Phospholipid Bilayers Probed with the Valinomycin-K ⁺ Complex. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 757-761.	0.6	23
118	Innate Recognition of Bacteria: Engagement of Multiple Receptors. Critical Reviews in Immunology, 2002, 22, 18.	1.0	23
119	Investigations into the ability of an oblique α-helical template to provide the basis for design of an antimicrobial anionic amphiphilic peptide. FEBS Journal, 2006, 273, 3792-3803.	2.2	23
120	Hemoglobin Enhances the Biological Activity of Synthetic and Natural Bacterial (Endotoxic) Virulence Factors: A General Principle. Medicinal Chemistry, 2008, 4, 520-525.	0.7	22
121	MARCKS as a Negative Regulator of Lipopolysaccharide Signaling. Journal of Immunology, 2012, 188, 3893-3902.	0.4	22
122	Physicochemical characterization and biological activity of a glycoglycerolipid from Mycoplasma fermentans. FEBS Journal, 2003, 270, 3271-3279.	0.2	20
123	Pore formation by complement in the outer membrane of Gram-negative bacteria studied with asymmetric planar lipopolysaccharide/phospholipid bilayers. Journal of Membrane Biology, 1990, 118, 161-170.	1.0	19
124	Biophysical Analysis of Lipopolysaccharide Formulations for an Understanding of the Low Endotoxin Recovery (LER) Phenomenon. International Journal of Molecular Sciences, 2017, 18, 2737.	1.8	18
125	Novel Synthetic, Host-defense Peptide Protects Against Organ Injury/Dysfunction in a Rat Model of Severe Hemorrhagic Shock. Annals of Surgery, 2018, 268, 348-356.	2.1	18
126	Physicochemical characterization and biological activity of lipooligosaccharides and lipid A from <i>Neisseria meningitidis</i> . Journal of Endotoxin Research, 2007, 13, 343-357.	2.5	17

#	Article	IF	Citations
127	Coupling killing to neutralization: combined therapy with ceftriaxone/Pep19-2.5 counteracts sepsis in rabbits. Experimental and Molecular Medicine, 2017, 49, e345-e345.	3.2	17
128	Investigation into the interaction of the bacterial protease OmpT with outer membrane lipids and biological activity of OmpT:lipopolysaccharide complexes. European Biophysics Journal, 2005, 34, 28-41.	1.2	16
129	Innate recognition of bacteria: engagement of multiple receptors. Critical Reviews in Immunology, 2002, 22, 251-68.	1.0	16
130	Biophysical Characterization of the Interaction of Endotoxins with Hemoglobins. Medicinal Chemistry, 2007, 3, 13-20.	0.7	15
131	Physico-chemical and biophysical study of the interaction of hexa- and heptaacyl lipid A from Erwinia carotovora with magainin 2-derived antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2051-2057.	1.4	15
132	Structural investigations into the interaction of hemoglobin and part structures with bacterial endotoxins. Innate Immunity, 2008, 14, 39-49.	1.1	15
133	Pulmonary surfactant protein A-induced changes in the molecular conformation of bacterial deep-rough LPS lead to reduced activity on human macrophages. Innate Immunity, 2014, 20, 787-798.	1.1	15
134	Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: Role of a putative amphiphilic \hat{l} ±-helix at the N-terminus of the movement protein. Biopolymers, 2005, 79, 86-96.	1.2	13
135	interaction mechanisms with bacterial model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2728-2738.	1.4	13
136	A comment on the preparation of liposomes from and on the $\hat{l}^2\hat{a}^{\dagger}\hat{l}^{\pm}$ acyl chain melting behaviour of rough mutant lipopolysaccharide. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1069, 1-4.	1.4	12
137	Antibacterial action of synthetic antilipopolysaccharide peptides (SALP) involves neutralization of both membraneâ€bound and free toxins. FEBS Journal, 2019, 286, 1576-1593.	2.2	12
138	Fatty Acid Conjugation Leads to Length-Dependent Antimicrobial Activity of a Synthetic Antibacterial Peptide (Pep19-4LF). Antibiotics, 2020, 9, 844.	1.5	12
139	Conformation and Supramolecular Structure of Lipid A. Advances in Experimental Medicine and Biology, 2009, 667, 25-38.	0.8	12
140	Mechanism of $Hb\hat{1}^3$ -35-induced an increase in the activation of the human immune system by endotoxins. Innate Immunity, 2015, 21, 305-313.	1.1	11
141	Antimicrobial peptides Pep19–2.5 and Pep19-4LF inhibit Streptococcus mutans growth and biofilm formation. Microbial Pathogenesis, 2019, 133, 103546.	1.3	11
142	Synthesis and mesomorphic properties of glycosyl dialkyl- and diacyl-glycerols bearing saturated, unsaturated and methyl branched fatty acid and fatty alcohol chains. Chemistry and Physics of Lipids, 2005, 135, 1-14.	1.5	10
143	Synthesis and mesomorphic properties of glycosyl dialkyl- and diacyl-glycerols bearing saturated, unsaturated and methyl branched fatty acid and fatty alcohol chains. Chemistry and Physics of Lipids, 2005, 135, 15-26.	1.5	10
144	Structural preferences of dioleoyl glycolipids with mono- and disaccharide head groups. Chemistry and Physics of Lipids, 2007, 149, 52-58.	1.5	10

#	Article	IF	Citations
145	Bacterial Cell Wall Compounds as Promising Targets of Antimicrobial Agents II. Immunological and Clinical Aspects. Current Drug Targets, 2012, 13, 1131-1137.	1.0	10
146	effects. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2739-2744.	1.4	10
147	Quantification of the Influence of Endotoxins on the Mechanics of Adult and Neonatal Red Blood Cells. Journal of Physical Chemistry B, 2015, 119, 7837-7845.	1.2	10
148	The synthetic antimicrobial peptide 19-2.5 attenuates mitochondrial dysfunction in cardiomyocytes stimulated with human sepsis serum. Innate Immunity, 2016, 22, 612-619.	1.1	10
149	An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Review of Anti-Infective Therapy, 2021, 19, 495-517.	2.0	10
150	Physicochemical and Biological Characterization of Anti-Endotoxin Peptides and Their Influence on Lipid Properties. Protein and Peptide Letters, 2010, 17, 1328-1333.	0.4	10
151	Structural polymorphism of hydrated ether-linked dimyristyl maltoside and melibioside. Chemistry and Physics of Lipids, 2008, 151, 18-29.	1.5	9
152	Effective Antimicrobial and Anti-Endotoxin Activity of Cationic Peptides Based on Lactoferricin: A Biophysical and Microbiological Study. Anti-Infective Agents in Medicinal Chemistry, 2010, 9, 9-22.	0.6	9
153	Therapeutical Administration of Peptide Pep19-2.5 and Ibuprofen Reduces Inflammation and Prevents Lethal Sepsis. PLoS ONE, 2015, 10, e0133291.	1.1	9
154	Calorimetric investigations of the effect of polymyxin B on different Gram-negative bacteria. Thermochimica Acta, 2007, 458, 34-37.	1.2	8
155	Influence of serum on the immune recognition of a synthetic lipopeptide mimetic of the 19-kDa lipoprotein from Mycobacterium tuberculosis. Innate Immunity, 2010, 16, 213-225.	1.1	8
156	Supramolecular structure of enterobacterial wild-type lipopolysaccharides (LPS), fractions thereof, and their neutralization by Pep19-2.5. Journal of Structural Biology, 2016, 194, 68-77.	1.3	8
157	Peptide drug stability: The anti-inflammatory drugs Pep19-2.5 and Pep19-4LF in cream formulation. European Journal of Pharmaceutical Sciences, 2018, 115, 240-247.	1.9	8
158	Inactivation of Bacteria by \hat{I}^3 -Irradiation to Investigate the Interaction with Antimicrobial Peptides. Biophysical Journal, 2019, 117, 1805-1819.	0.2	8
159	Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs). Advances in Experimental Medicine and Biology, 2019, 1117, 111-129.	0.8	8
160	Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19-2.5. International Journal of Molecular Sciences, 2021, 22, 1465.	1.8	8
161	Biophysical Mechanisms of the Neutralization of Endotoxins by Lipopolyamines. The Open Biochemistry Journal, 2013, 7, 82-93.	0.3	8
162	Specific localisation of ions in bacterial membranes unravels physical mechanism of effective bacteria killing by sanitiser. Scientific Reports, 2020, 10, 12302.	1.6	7

#	Article	IF	Citations
163	A Synthetic Peptide Designed to Neutralize Lipopolysaccharides Attenuates Metaflammation and Diet-Induced Metabolic Derangements in Mice. Frontiers in Immunology, 2021, 12, 701275.	2.2	7
164	Investigation into the Interaction of the Phosphoporin PhoE with Outer Membrane Lipids: Physicochemical Characterization and Biological Activity. Medicinal Chemistry, 2005, 1, 537-546.	0.7	6
165	Invited review: Mechanisms of endotoxin neutralization by synthetic cationic compounds. Journal of Endotoxin Research, 2006, 12, 261-277.	2.5	6
166	Characterization of the N-terminal segment used by the barley yellow dwarf virus movement protein to promote interaction with the nuclear membrane of host plant cells. Peptides, 2007, 28, 2091-2097.	1.2	5
167	Structural polymorphism of hydrated monoacylated maltose glycolipids. Chemistry and Physics of Lipids, 2008, 155, 31-37.	1.5	5
168	Interaction of Melittin with Phospholipid- and Lipopolysaccharide- Containing Model Membranes. Anti-Infective Agents in Medicinal Chemistry, 2009, 8, 17-27.	0.6	5
169	Biophysical analysis of the interaction of the serum protein human \hat{l}^2 ₂ GPI with bacterial lipopolysaccharide. FEBS Open Bio, 2014, 4, 432-440.	1.0	5
170	Encapsulation and release of As pidasept peptides in polysaccharide formulation for oral application. European Journal of Pharmaceutical Sciences, 2021, 158, 105687.	1.9	5
171	Deuteration can affect the conformational behaviour of amphiphilic $\hat{l}\pm$ -helical structures. Biophysical Chemistry, 2006, 119, 115-120.	1.5	4
172	Isothermal titration calorimetric investigations of endotoxin binding to macrophages and the inhibition by polymyxin B. Thermochimica Acta, 2004, 415, 63-67.	1.2	3
173	Biophysical investigations into the interactions of endotoxins with bile acids. Innate Immunity, 2012, 18, 307-317.	1.1	3
174	Intrinsic conformation of lipid A is responsible for agonistic and antagonistic activity., 2000, 267, 3032.		2
175	In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines, 2022, 10, 386.	1.4	2
176	Improvement of X-ray powder-diffraction patterns of Salmonella minnesota deep rough mutant bacterial lipopolysaccharide induced by heating plus hydration. Thin Solid Films, 1998, 312, 313-319.	0.8	1
177	Cellular distribution of lipid A and LPS R595 after inÂvitro application to isolated human monocytes by freeze-fracture replica immunogold-labelling. Innate Immunity, 2013, 19, 588-595.	1.1	1
178	Analysis of cytokine immune response profile in response to inflammatory stimuli in mice with genetic defects in fetal and adult hemoglobin chain expression. Pharmacogenomics Journal, 2018, 18, 546-555.	0.9	1
179	Physicochemical properties of microbial glycopolymers. , 2010, , 759-779.		0
180	Enhancing actions of peptides derived from the \hat{I}^3 -chain of fetal human hemoglobin on the immunostimulant activities of monophosphoryl lipid A. Innate Immunity, 2016, 22, 168-180.	1.1	0

#	Article	IF	CITATIONS
181	Development of Antimicrobial Peptides Based on Limulus Anti-Lipopolysaccharide Factor (LALF). , 2019, , 683-706.		0
182	Mass Spectrometric Quantification of the Antimicrobial Peptide Pep19-2.5 with Stable Isotope Labeling and Acidic Hydrolysis. Pharmaceutics, 2021, 13, 1342.	2.0	0
183	Physico-chemistry of Lipopolysaccharides. , 2020, , 1-18.		0
184	TLR4 Ligands: Single Molecules and Aggregates. Agents and Actions Supplements, 2021, , 39-56.	0.2	0