Van-Phuc Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1180620/publications.pdf

Version: 2024-02-01

516710 580821 42 635 16 25 citations g-index h-index papers 43 43 43 682 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Laser-induced nanobubbles safely ablate vitreous opacities in vivo. Nature Nanotechnology, 2022, 17, 552-559.	31.5	37
2	Multimodal In Vivo Imaging of Retinal and Choroidal Vascular Occlusion. Photonics, 2022, 9, 201.	2.0	3
3	Biodegradable silicon nanoneedles for ocular drug delivery. Science Advances, 2022, 8, eabn1772.	10.3	31
4	Chorioretinal Hypoxia Detection Using Lipid-Polymer Hybrid Organic Room-Temperature Phosphorescent Nanoparticles. ACS Applied Materials & Emp; Interfaces, 2022, 14, 18182-18193.	8.0	6
5	Retinal safety evaluation of photoacoustic microscopy. Experimental Eye Research, 2021, 202, 108368.	2.6	5
6	Longitudinal 3D Visualization of Choroidal Neovascularization in a Rabbit Model using Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Molecular Imaging., 2021,,.		0
7	Functionalized contrast agents for multimodality photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy molecular retinal imaging. Methods in Enzymology, 2021, 657, 443-480.	1.0	6
8	Gold Nanorod Contrast-Enhanced Molecular Imaging of Choroidal Neovascularization using Dual Photoacoustic Ophthalmoscopy and Optical Coherence Tomography in a Rabbit Model., 2021,,.		0
9	Indocyanine greenâ€enhanced multimodal photoacoustic microscopy and optical coherence tomography molecular imaging of choroidal neovascularization. Journal of Biophotonics, 2021, 14, e202000458.	2.3	8
10	Gold Nanorod Enhanced Photoacoustic Microscopy and Optical Coherence Tomography of Choroidal Neovascularization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40214-40228.	8.0	12
11	Long-Term, Noninvasive <i>In Vivo</i> Tracking of Progenitor Cells Using Multimodality Photoacoustic, Optical Coherence Tomography, and Fluorescence Imaging. ACS Nano, 2021, 15, 13289-13306.	14.6	17
12	In Vivo Subretinal ARPE-19 Cell Tracking Using Indocyanine Green Contrast-Enhanced Multimodality Photoacoustic Microscopy, Optical Coherence Tomography, and Fluorescence Imaging for Regenerative Medicine. Translational Vision Science and Technology, 2021, 10, 10.	2.2	7
13	Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nature Communications, 2021, 12, 34.	12.8	77
14	Thin Layer-Protected Gold Nanoparticles for Targeted Multimodal Imaging with Photoacoustic and CT. Pharmaceuticals, 2021, 14, 1075.	3.8	8
15	Plasmonic Gold Nanostar-Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Molecular Imaging To Evaluate Choroidal Neovascularization. ACS Sensors, 2020, 5, 3070-3081.	7.8	26
16	High Resolution Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Visualization of Choroidal Vascular Occlusion. International Journal of Molecular Sciences, 2020, 21, 6508.	4.1	9
17	Three-Dimensional Visualization of Choroidal Vascular Lesions using Multimodal Photoacoustic Microscopy and Optical Coherence Tomography in Living Rabbits. , 2020, , .		0
18	Organic fluorophore capped gold nanostars for enhanced detection of choroidal neovascularization in living rabbits using multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy. , 2020, , .		0

#	Article	IF	Citations
19	Ultralow energy photoacoustic microscopy for ocular imaging in vivo. Journal of Biomedical Optics, 2020, 25, 1.	2.6	9
20	Visualization of Retinal Ischemia using Multimodal Photoacoustic Microscopy and Optical Coherence Tomography in a Rabbit Model. , 2020, , .		0
21	Blue gold nanoparticles contrast-enhanced multimodal Photoacoustic Microscopy and Optical Coherence Tomography for molecular imaging of choroidal neovascularization. , 2020, , .		0
22	Integrated photoacoustic microscopy, optical coherence tomography and fluorescence microscopy imaging of rabbit ocular neovascularization in vivo. , 2020, , .		0
23	Multimodal photoacoustic microscopy and optical coherence tomography imaging of laser-induced choroidal neovascularization in the rabbit retina. , 2020, , .		0
24	Real-time OCT guidance and multimodal imaging monitoring of subretinal injection induced choroidal neovascularization in rabbit eyes. Experimental Eye Research, 2019, 186, 107714.	2.6	20
25	High-resolution multimodal photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits. Scientific Reports, 2019, 9, 10560.	3.3	31
26	Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels in vivo. Scientific Reports, 2019, 9, 5945.	3.3	45
27	Integrated photoacoustic microscopy and optical coherence tomography image-guided laser induced branch retinal vein occlusion in living rabbits. , 2019, , .		1
28	Indocyanine Green-Enhanced Dual Photoacoustic Microscopy and Fluorescence Imaging for Visualization of Choroidal Neovascularization in a Rabbit Model. , 2019, , .		0
29	Gold Nanorod Contrast-Enhanced Molecular Imaging of Retinal Neovascularization using Dual Photoacoustic Microscopy and Optical Coherence Tomography in Rabbits. , 2019, , .		0
30	Plasmonic Gold Nanorods for theranostic photoacoustic microscopy and optical coherence tomography imaging enhancement and photodynamic therapy of retinal neovascularization in a rabbit model., 2019,,.		0
31	Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes. Journal of Visualized Experiments, 2018, , .	0.3	31
32	Photoacoustic Ophthalmoscopy: Principle, Application, and Future Directions. Journal of Imaging, 2018, 4, 149.	3.0	24
33	In Vivo 3D Imaging of Retinal Neovascularization Using Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Imaging. Journal of Imaging, 2018, 4, 150.	3.0	20
34	High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. Light: Science and Applications, 2018, 7, 103.	16.6	77
35	Multi-wavelength, en-face photoacoustic microscopy and optical coherence tomography imaging for early and selective detection of laser induced retinal vein occlusion. Biomedical Optics Express, 2018, 9, 5915.	2.9	30
36	Retinal and choroidal imaging in vivo using integrated photoacoustic microscopy and optical coherence tomography. , 2018, 10474, .		0

#	Article	IF	CITATION
37	Integrated photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy for multimodal chorioretinal imaging. , 2018, 10494, .		1
38	Feasibility of photoacoustic evaluations on dualâ€thermal treatment of <i>ex vivo</i> bladder tumors. Journal of Biophotonics, 2017, 10, 577-588.	2.3	13
39	Biocompatible astaxanthin as novel contrast agent for biomedical imaging. Journal of Biophotonics, 2017, 10, 1053-1061.	2.3	16
40	Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors. Oncotarget, 2017, 8, 113719-113733.	1.8	44
41	Application of organic IR788-loaded semi-interpenetrating network dyes for photoacoustic imaging. Japanese Journal of Applied Physics, 2017, 56, 07JF12.	1.5	2
42	Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy. PLoS ONE, 2017, 12, e0174687.	2.5	18