
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11805987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and excellent electromagnetic absorption properties of dendritic structured Fe3O4@PANI composites. Journal of Alloys and Compounds, 2022, 891, 161922.	5.5	17
2	Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chemical Engineering Journal, 2022, 431, 134007.	12.7	145
3	Ultrabroadband Metamaterial Absorber Based on Effectively Coupled Multilayer HIS Loaded Structure With Dallenbach Layer. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 232-238.	4.6	25
4	Hollow Beaded Fe ₃ C/N-Doped Carbon Fibers toward Broadband Microwave Absorption. ACS Applied Materials & Interfaces, 2022, 14, 3084-3094.	8.0	103
5	Nanostructured Ge/ZnS Films for Multispectral Camouflage with Low Visibility and Low Thermal Emission. ACS Applied Nano Materials, 2022, 5, 5119-5127.	5.0	18
6	Construction of hollow core-shelled nitrogen-doped carbon-coated yttrium aluminum garnet composites toward efficient microwave absorption. Journal of Colloid and Interface Science, 2022, 622, 181-191.	9.4	30
7	Multi-interfacial magnetic carbon nanotubes encapsulated hydrangea-like NiMo/MoC/N-doped carbon composites for efficient microwave absorption. Carbon, 2022, 196, 828-839.	10.3	54
8	Nickel/Nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106141.	7.6	85
9	Enhancement on high-temperature microwave absorption properties of TiB2–MgO composites with multi-interfacial effects. Ceramics International, 2021, 47, 4475-4485. Adaptive infrared camouflage based on quasi-photonic crystal with <mml:math< td=""><td>4.8</td><td>16</td></mml:math<>	4.8	16
10	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e439" altimg="si5.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ge</mml:mi </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub> mathvariant="normal">Sb</mml:mrow> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> mathvariant="normal">Sb <mml:mrow><mml:mn>2</mml:mn></mml:mrow> mathvariant="normal">Te <mml:mrow><mml:mn>5<. Optics Communications,</mml:mn></mml:mrow>	ub 2 amml: ub> <mml:< td=""><td>:msub><mml msub><mml< td=""></mml<></mml </td></mml:<>	:msub> <mml msub><mml< td=""></mml<></mml
11	Temperature characteristics of Ge/ZnS one-dimension photonic crystal for infrared camouflage. Optical Materials, 2021, 121, 111564.	3.6	18
12	1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption. Composites Part B: Engineering, 2021, 224, 109161.	12.0	85
13	Dual-band resonance induced broadband low-frequency radar absorber based on electric ring resonator embedded magnetic absorbing materials. Journal of Electromagnetic Waves and Applications, 2021, 35, 801-812.	1.6	7
14	Bimetallic Oxalate Rod-Derived NiFe/Fe ₃ O ₄ @C Composites with Tunable Magneto-dielectric Properties for High-Performance Microwave Absorption. Journal of Physical Chemistry C, 2021, 125, 24540-24549.	3.1	18
15	Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance. Journal of Alloys and Compounds, 2020, 812, 152083.	5.5	88
16	Fe/Fe ₃ O ₄ @N-Doped Carbon Hexagonal Plates Decorated with Ag Nanoparticles for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 7266-7278.	5.0	43
17	Valid corollaries of polarization-separated color attributes for a multi-layer dielectric structure. Physica Scripta, 2019, 94, 115007.	2.5	0
18	A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Composites Part A: Applied Science and Manufacturing, 2019, 119, 1-7.	7.6	121

#	Article	IF	CITATIONS
19	Synergistic effect of silica coated porous rodlike nickel ferrite and multiwalled carbon nanotube with improved electromagnetic wave absorption performance. Journal of Alloys and Compounds, 2019, 802, 364-372.	5.5	60
20	Synthesis of nitrogen-doped graphene wrapped SnO ₂ hollow spheres as high-performance microwave absorbers. RSC Advances, 2019, 9, 10745-10753.	3.6	17
21	Dual-band and high-efficiency circular polarization conversion via asymmetric transmission with anisotropic metamaterial in the terahertz region. Optical Materials Express, 2019, 9, 1365.	3.0	57
22	Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Continuum, 2019, 2, 2113.	1.8	78
23	Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves. OSA Continuum, 2019, 2, 2391.	1.8	16
24	Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Materials Letters, 2018, 219, 123-126.	2.6	84
25	Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle. Optics Communications, 2018, 415, 194-201.	2.1	157
26	Preparation and microwave absorption properties of honeycomb core structures coated with composite absorber. AIP Advances, 2018, 8, .	1.3	22
27	Dual and broadband terahertz metamaterial absorber based on a compact resonator structure. Optical Materials Express, 2018, 8, 3104.	3.0	77
28	Co-Evaluation of Reflection Loss and Surface Wave Attenuation for Magnetic Absorbing Material. IEEE Transactions on Antennas and Propagation, 2018, 66, 6057-6060.	5.1	23
29	Enhanced Microwave Absorption and Surface Wave Attenuation Properties of Co0.5Ni0.5Fe2O4 Fibers/Reduced Graphene Oxide Composites. Materials, 2018, 11, 508.	2.9	13
30	Quasi-periodic photonic crystal Fabry–Perot optical filter based on Si/SiO ₂ for visible-laser spectral selectivity. Journal Physics D: Applied Physics, 2018, 51, 225103.	2.8	21
31	Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal. Optics Letters, 2018, 43, 5323.	3.3	36
32	An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	23
33	Enhanced spectra selectivity of solar absorber film with Ti/Si 3 N 4 photonic structures. Materials Letters, 2017, 201, 5-8.	2.6	6
34	Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface. Optik, 2017, 137, 148-155.	2.9	45
35	Design and fabrication of energy efficient film based on one-dimensional photonic band gap structures. Journal of Alloys and Compounds, 2017, 697, 1-4.	5.5	5
36	Monodomain NiCuZn Ferrite With High Miniaturization Factor and Low Magnetic Loss at 200 MHz for Antenna Miniaturization. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	10

#	Article	IF	CITATIONS
37	Crystal structure tailored microwave magnetodielectric effect in YbYFeO ceramics. Journal of Alloys and Compounds, 2017, 726, 1030-1039.	5.5	16
38	Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility. Journal Physics D: Applied Physics, 2017, 50, 505108.	2.8	22
39	Ultra-thin Low-Frequency Broadband Microwave Absorber Based on Magnetic Medium and Metamaterial. Journal of Electronic Materials, 2017, 46, 1293-1299.	2.2	62
40	Ultra-Broadband Linear Polarization Conversion via Diode-Like Asymmetric Transmission with Composite Metamaterial for Terahertz Waves. Plasmonics, 2017, 12, 1113-1120.	3.4	77
41	ULTRABROADBAND DIODE-LIKE ASYMMETRIC TRANSMISSION AND HIGH-EFFICIENCY CROSS-POLARIZATION CONVERSION BASED ON COMPOSITE CHIRAL METAMATERIAL. Progress in Electromagnetics Research, 2017, 160, 89-101.	4.4	30
42	Tunable Electromagnetic and Microwave Absorption Properties of Ba3Co2Fe24O41/P(VDF-TrFE) Composites. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	1
43	Enhanced Microwave Absorption Properties of Flexible Polymer Composite Based on Hexagonal NiCo2O4 Microplates and PVDF. Journal of Electronic Materials, 2016, 45, 4202-4207.	2.2	13
44	A novel miniaturized and wideband microstrip antenna based on metamaterials. , 2016, , .		0
45	Synthesis and excellent microwave absorption properties of reduced graphene oxide/FeNi ₃ /Fe ₃ O ₄ composite. New Journal of Chemistry, 2016, 40, 6238-6243.	2.8	34
46	A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Optical Materials, 2016, 62, 28-33.	3.6	84
47	Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications. Optical Materials, 2016, 62, 52-56.	3.6	83
48	Enhanced Microwave Absorption of SiO2-Coated Fe0.65Co0.35 Flakes at a Wide Frequency Band (1–18ÂGHz). Journal of Electronic Materials, 2016, 45, 3640-3645.	2.2	12
49	Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Optical Materials, 2016, 53, 195-200.	3.6	118
50	A polarization independent phase gradient metasurface for spoof plasmon polaritons coupling. Journal of Optics (United Kingdom), 2016, 18, 025101.	2.2	10
51	A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Optics Communications, 2016, 361, 41-46.	2.1	123
52	Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling. Applied Physics Express, 2015, 8, 122001.	2.4	27
53	Fe3O4 cladding enhanced magnetic natural resonance and microwave absorption properties of Fe0.65Co0.35 alloy flakes. Journal of Alloys and Compounds, 2015, 646, 345-350.	5.5	34
54	Enhanced microwave absorption of multiferroic Co 2 Z hexaferrite–BaTiO 3 composites with tunable impedance matching. Journal of Alloys and Compounds, 2015, 643, 111-115.	5.5	46

#	Article	IF	CITATIONS
55	Monodomain Design and Permeability Study of High-Q-Factor NiCuZn Ferrites for Near-Field Communication Application. Journal of Electronic Materials, 2015, 44, 4367-4372.	2.2	19
56	Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial. Applied Optics, 2014, 53, 5763.	1.8	19
57	Design and realization of one-dimensional double hetero-structure photonic crystals for infrared-radar stealth-compatible materials applications. Journal of Applied Physics, 2014, 116, .	2.5	65
58	Electromagnetic properties of Fe-Si-Al/BaTiO3/Nd2Fe14B particulate composites at microwave frequencies. Journal of Applied Physics, 2014, 115, .	2.5	16
59	Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator. Journal of Applied Physics, 2014, 115, .	2.5	67
60	Circular polarization converters based on bi-layered asymmetrical split ring metamaterials. Applied Physics A: Materials Science and Processing, 2014, 116, 643-648.	2.3	65
61	An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator. Applied Physics A: Materials Science and Processing, 2013, 111, 209-215.	2.3	82
62	Metamaterial absorber and extending absorbance bandwidth based on multi-cross resonators. Applied Physics B: Lasers and Optics, 2013, 111, 483-488.	2.2	39
63	A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics and Laser Technology, 2013, 48, 415-421.	4.6	130
64	Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials. Optics Express, 2013, 21, 5239.	3.4	68
65	Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials. Applied Physics Letters, 2013, 103, .	3.3	93
66	Microwave properties of surface modified Fe–Co–Zr alloy flakes with mechanochemically synthesized polystyrene. Journal of Alloys and Compounds, 2009, 480, 761-764.	5.5	33
67	Preparation and microwave absorption properties of foam-based honeycomb sandwich structures. Europhysics Letters, 2009, 85, 58003.	2.0	49
68	Magnetic properties of carbonyl iron fibers and their microwave absorbing characterization as the filer in polymer foams. Journal of Alloys and Compounds, 2008, 456, 452-455.	5.5	50
69	Preparation and microwave absorption properties of metal magnetic micropowder-coated honeycomb sandwich structures. Smart Materials and Structures, 2007, 16, 1501-1505.	3.5	52
70	Effects of aspect ratio and particle size on the microwave properties of Fe–Cr–Si–Al alloy flakes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 466, 178-182.	5.6	90
71	Variational analysis of evolution for magnetostatic envelope bright soliton with higher-order dispersion. Journal of Magnetism and Magnetic Materials, 2007, 313, 122-126.	2.3	1
72	Dynamics of two coupled Bose-Einstein Condensate solitons in an optical lattice. Optics Express, 2006, 14, 3594.	3.4	30

#	Article	IF	CITATIONS
73	Effect of Particle Size and Concentration on Microwave-Absorbing Properties of CuxCo2-xY (x=0, 1) Hexaferrite Composites. Journal of the American Ceramic Society, 2006, 89, 1450-1452.	3.8	37
74	Electromagnetic properties of Fe55Ni45 fiber fabricated by magnetic-field-induced thermal decomposition. Materials Chemistry and Physics, 2005, 94, 408-411.	4.0	39
75	Optimization of two-layer electromagnetic wave absorbers composed of magnetic and dielectric materials in gigahertz frequency band. Journal of Applied Physics, 2005, 98, 084903.	2.5	33