
Richard Seifert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11805395/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Membrane Lipid Composition and Amino Acid Excretion Patterns of Methanothermococcus okinawensis Grown in the Presence of Inhibitors Detected in the Enceladian Plume. Life, 2019, 9, 85.	2.4	12
2	Can hydrocarbons entrapped in seep carbonates serve as gas geochemistry recorder?. Geo-Marine Letters, 2018, 38, 121-129.	1.1	9
3	Endemic hydrothermal vent species identified in the open ocean seed bank. Nature Microbiology, 2016, 1, 16086.	13.3	55
4	Authigenic carbonate formation and its impact on the biomarker inventory at hydrocarbon seeps – A case study from the Holocene Black Sea and the Plio-Pleistocene Northern Apennines (Italy). Marine and Petroleum Geology, 2015, 66, 532-541.	3.3	28
5	Methanogenic capabilities of <scp>ANME</scp> â€archaea deduced from <scp><scp>¹³C</scp></scp> â€labelling approaches. Environmental Microbiology, 2013, 15, 2384-2393.	3.8	61
6	Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiology Ecology, 2013, 85, 210-210.	2.7	0
7	Biomarkers Reveal Diverse Microbial Communities in Black Smoker Sulfides from Turtle Pits (Mid-Atlantic Ridge, Recent) and Yaman Kasy (Russia, Silurian). Geomicrobiology Journal, 2012, 29, 66-75.	2.0	17
8	Diagenetic barium cycling in Black Sea sediments – A case study for anoxic marine environments. Geochimica Et Cosmochimica Acta, 2012, 88, 88-105.	3.9	67
9	Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge. Environmental Microbiology Reports, 2011, 3, 727-737.	2.4	25
10	Hydrogen is an energy source for hydrothermal vent symbioses. Nature, 2011, 476, 176-180.	27.8	251
11	Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiology Ecology, 2010, 74, 55-71.	2.7	37
12	Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea. Geochimica Et Cosmochimica Acta, 2009, 73, 750-766.	3.9	38
13	lsotope fractionation and mixing in methane plumes from the Logatchev hydrothermal field. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	31
14	A novel, multiâ€layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Environmental Microbiology, 2008, 10, 1934-1947.	3.8	55
15	Marine Methane Biogeochemistry of the Black Sea: A Review. Modern Approaches in Solid Earth Sciences, 2008, , 281-311.	0.3	6
16	Flux and dispersion of gases from the "Drachenschlund―hydrothermal vent at 8°18' S, 13°30' W on the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 2008, 270, 338-348.	4.4	31
17	Aerobic methanotrophy in the oxic–anoxic transition zone of the Black Sea water column. Organic Geochemistry, 2007, 38, 84-91.	1.8	71
18	Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chemical Geology, 2007, 242, 1-21.	3.3	246

RICHARD SEIFERT

#	Article	IF	CITATIONS
19	Microbial CO2fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9°S). Environmental Microbiology, 2007, 9, 1186-1201.	3.8	64
20	The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15Ã,°N on the Mid-Atlantic Ridge. FEMS Microbiology Ecology, 2007, 61, 97-109.	2.7	81
21	Extracellular polymeric substances (EPS) from cyanobacterial mats: characterisation and isolation method optimisation. Marine Biology, 2007, 152, 1077-1085.	1.5	79
22	Hydrothermal fluid emanations from the submarine Kick'em Jenny volcano, Lesser Antilles island arc. Marine Geology, 2007, 244, 129-141.	2.1	8
23	Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro. Organic Geochemistry, 2006, 37, 1411-1419.	1.8	40
24	Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environmental Microbiology, 2006, 8, 1220-1227.	3.8	158
25	Subsurface Microbial Methanotrophic Mats in the Black Sea. Applied and Environmental Microbiology, 2005, 71, 6375-6378.	3.1	87
26	In Vitro Study of Lipid Biosynthesis in an Anaerobically Methane-Oxidizing Microbial Mat. Applied and Environmental Microbiology, 2005, 71, 4345-4351.	3.1	66
27	Lipid geochemistry of methane-seep-related Black Sea carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 227, 31-47.	2.3	51
28	Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11111-11116.	7.1	331
29	Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Organic Geochemistry, 2003, 34, 81-87.	1.8	114
30	Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 2002, 297, 1013-1015.	12.6	673
31	Geochemistry of diffuse low-temperature hydrothermal fluids in the North Fiji basin. Geochimica Et Cosmochimica Acta, 2002, 66, 1409-1427.	3.9	40
32	Methane distribution in European tidal estuaries. Biogeochemistry, 2002, 59, 95-119.	3.5	167
33	Ethylene and methane in the upper water column of the subtropical Atlantic. Biogeochemistry, 1999, 44, 73-91.	3.5	30
34	Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochimica Et Cosmochimica Acta, 1999, 63, 3959-3966.	3.9	232
35	Formation of Nonextractable Soil Residues:Â A Stable Isotope Approach. Environmental Science & Technology, 1999, 33, 3761-3767.	10.0	45
36	Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments. Organic Geochemistry, 1994, 22, 671-IN10.	1.8	82