Jack Brimberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11803867/publications.pdf

Version: 2024-02-01

257357 233338 2,250 79 24 45 h-index citations g-index papers 85 85 85 1291 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research, 2007, 179, 927-939.	3.5	340
2	Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem. Operations Research, 2000, 48, 444-460.	1.2	236
3	Variable Neighborhood Search. Profiles in Operations Research, 2010, , 61-86.	0.3	138
4	A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem. European Journal of Operational Research, 2010, 206, 289-300.	3.5	134
5	Pooling Problem: Alternate Formulations and Solution Methods. Management Science, 2004, 50, 761-776.	2.4	113
6	Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances. Operations Research, 1993, 41, 1153-1163.	1.2	74
7	A new local search for continuous location problems. European Journal of Operational Research, 2014, 232, 256-265.	3.5	66
8	Solving large p-median clustering problems by primal–dual variable neighborhood search. Data Mining and Knowledge Discovery, 2009, 19, 351-375.	2.4	60
9	New heuristic algorithms for solving the planar p-median problem. Computers and Operations Research, 2015, 62, 296-304.	2.4	55
10	Variable Neighborhood Search. Profiles in Operations Research, 2019, , 57-97.	0.3	52
11	Primal-Dual Variable Neighborhood Search for the Simple Plant-Location Problem. INFORMS Journal on Computing, 2007, 19, 552-564.	1.0	51
12	A new heuristic for solving the p-median problem in the plane. Computers and Operations Research, 2013, 40, 427-437.	2.4	46
13	Solving the maximally diverse grouping problem by skewed general variable neighborhood search. Information Sciences, 2015, 295, 650-675.	4.0	42
14	A bicriteria model for locating a semi-desirable facility in the plane. European Journal of Operational Research, 1998, 106, 144-151.	3.5	41
15	Estimation of travel distances with the weighted â,, "p norm: Some empirical results. Journal of Transport Geography, 2007, 15, 62-72.	2.3	37
16	A New Distance Function for Modeling Travel Distances in a Transportation Network. Transportation Science, 1992, 26, 129-137.	2.6	36
17	New local searches for solving the multi-source Weber problem. Annals of Operations Research, 2016, 246, 181-203.	2.6	35
18	Accelerating convergence in the Fermat–Weber location problem. Operations Research Letters, 1998, 22, 151-157.	0.5	32

#	Article	IF	CITATIONS
19	General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optimization Letters, 2017, 11, 377-388.	0.9	31
20	Variable neighborhood decomposition search for the edge weighted k-cardinality tree problem. Computers and Operations Research, 2004, 31, 1205-1213.	2.4	30
21	Attraction probabilities in variable neighborhood search. 4or, 2010, 8, 181-194.	1.0	28
22	The effect of axis rotation on distance estimation. European Journal of Operational Research, 1995, 80, 357-364.	3.5	26
23	Solving the capacitated clustering problem with variable neighborhood search. Annals of Operations Research, 2019, 272, 289-321.	2.6	26
24	Locating a minisum circle in the plane. Discrete Applied Mathematics, 2009, 157, 901-912.	0.5	25
25	A basic variable neighborhood search heuristic for the uncapacitated multiple allocation p-hub center problem. Optimization Letters, 2017, 11, 313-327.	0.9	25
26	Estimating travel distances by the weightedlp norm. Naval Research Logistics, 1991, 38, 241-259.	1.4	24
27	Linear Facility Location in Three Dimensions—Models and Solution Methods. Operations Research, 2002, 50, 1050-1057.	1.2	24
28	Decomposition strategies for large-scale continuous location–allocation problems. IMA Journal of Management Mathematics, 2006, 17, 307-316.	1.1	24
29	Solving the clique partitioning problem as a maximally diverse grouping problem. Optimization Letters, 2017, 11, 1123-1135.	0.9	21
30	Degeneracy in the multi-source Weber problem. Mathematical Programming, 1999, 85, 213-220.	1.6	20
31	When closest is not always the best: The distributed p-median problem. Journal of the Operational Research Society, 2021, 72, 200-216.	2.1	18
32	Solving a Class of Two-Dimensional Uncapacitated Location-Allocation Problems by Dynamic Programming. Operations Research, 1998, 46, 702-709.	1.2	17
33	Location Among Regions with Varying Norms. Annals of Operations Research, 2003, 122, 87-102.	2.6	16
34	An adaptive perturbation-based heuristic: An application to the continuous p-centre problem. Computers and Operations Research, 2016, 75, 1-11.	2.4	15
35	A bi-objective plant location problem: cost vs. demand served. Location Science, 1998, 6, 121-135.	0.2	13
36	Properties of Three-Dimensional Median Line Location Models. Annals of Operations Research, 2003, 122, 71-85.	2.6	13

#	Article	IF	Citations
37	Solving the planar p-median problem by variable neighborhood and concentric searches. Journal of Global Optimization, 2015, 63, 501-514.	1.1	13
38	LOCATING A SINGLE FACILITY IN THE PLANE IN THE PRESENCE OF A BOUNDED REGION AND DIFFERENT NORMS. Journal of the Operations Research Society of Japan, 2005, 48, 135-147.	0.3	12
39	Optimal solutions for the continuous <i>p</i> -centre problem and related -neighbour and conditional problems: A relaxation-based algorithm. Journal of the Operational Research Society, 2019, 70, 192-211.	2.1	12
40	Directional bias of the lp-norm. European Journal of Operational Research, 1993, 67, 287-294.	3. 5	11
41	Economic Development of Groundwater in Arid Zones with Applications to the Negev Desert, Israel. Management Science, 1994, 40, 353-363.	2.4	10
42	Estimating the parameters of the weighted î-pnorm by linear regression. IIE Transactions, 1996, 28, 363-367.	2.1	10
43	Locating a Circle on a Sphere. Operations Research, 2007, 55, 782-791.	1.2	10
44	On models for continuous facility location with partial coverage. Journal of the Operational Research Society, 2015, 66, 33-43.	2.1	10
45	Probabilisticl p distances in location models. Annals of Operations Research, 1992, 40, 67-75.	2.6	9
46	A minisum model with forbidden regions for locating a semi-desirable facility in the plane. Location Science, 1998, 6, 109-120.	0.2	9
47	The Capacitated p-facility Location Problem on the Real Line. International Transactions in Operational Research, 2001, 8, 727-738.	1.8	9
48	The uncapacitated r â€allocation p â€hub center problem. International Transactions in Operational Research, 2020, , .	1.8	9
49	Less is more: discrete starting solutions in the planar p-median problem. Top, 2022, 30, 34-59.	1.1	9
50	Solving the plant location problem on a line by linear programming. Top, 1998, 6, 277-286.	1.1	8
51	Locating a general minisum â€~circle' on the plane. 4or, 2011, 9, 351-370.	1.0	8
52	Fitting concentric circles to measurements. Mathematical Methods of Operations Research, 2014, 79, 119-133.	0.4	8
53	Using injection points in reformulation local search for solving continuous location problems. Yugoslav Journal of Operations Research, 2017, 27, 291-300.	0.5	8
54	A note on reduction of quadratic and bilinear programs with equality constraints. Journal of Global Optimization, 2002, 22, 39-47.	1.1	7

#	Article	IF	CITATIONS
55	Local and variable neighborhood search forÂtheÂk-cardinality subgraph problem. Journal of Heuristics, 2008, 14, 501-517.	1.1	7
56	A non-triangular hub location problem. Optimization Letters, 2020, 14, 1107-1126.	0.9	7
57	An efficient heuristic for a hub location routing problem. Optimization Letters, 2022, 16, 281-300.	0.9	7
58	Geometric fit of a point set by generalized circles. Journal of Global Optimization, 2011, 51, 115-132.	1.1	6
59	Locating an axis-parallel rectangle on a Manhattan plane. Top, 2014, 22, 185-207.	1.1	6
60	Solving multiple facilities location problems with separated clusters. Operations Research Letters, 2019, 47, 386-390.	0.5	6
61	Extension of the Weiszfeld procedure to a single facility minisum location model with mixed â,," p norms. Mathematical Methods of Operations Research, 2009, 70, 269-283.	0.4	5
62	Generating good starting solutions for the p-median problem in the plane. Electronic Notes in Discrete Mathematics, 2012, 39, 225-232.	0.4	5
63	Improved starting solutions for the planar p-median problem. Yugoslav Journal of Operations Research, 2021, 31, 45-64.	0.5	5
64	Less Is More Approach in Heuristic Optimization., 2022,, 469-499.		5
65	Less Is More Approach in Heuristic Optimization. , 2022, , 469-499. Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389.	1.1	5
		2.1	
65	Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389.		4
66	Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389. A location–allocation problem with concentric circles. IIE Transactions, 2015, 47, 1397-1406. Less is more: simple algorithms for the minimum sum of squares clustering problem. IMA Journal of	2.1	4
65 66 67	Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389. A location–allocation problem with concentric circles. IIE Transactions, 2015, 47, 1397-1406. Less is more: simple algorithms for the minimum sum of squares clustering problem. IMA Journal of Management Mathematics, 0, , .	2.1	4 4
65 66 67 68	Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389. A location–allocation problem with concentric circles. IIE Transactions, 2015, 47, 1397-1406. Less is more: simple algorithms for the minimum sum of squares clustering problem. IMA Journal of Management Mathematics, 0, , . Location and sizing of facilities on a line. Top, 2001, 9, 271-280. Web-based interorganizational information systems for logistics outsourcing. Annales Des	2.1 1.1 1.1	4 4 3
65 66 67 68	Locating a median line with partial coverage distance. Journal of Global Optimization, 2015, 62, 371-389. A location–allocation problem with concentric circles. IIE Transactions, 2015, 47, 1397-1406. Less is more: simple algorithms for the minimum sum of squares clustering problem. IMA Journal of Management Mathematics, 0, , . Location and sizing of facilities on a line. Top, 2001, 9, 271-280. Web-based interorganizational information systems for logistics outsourcing. Annales Des Telecommunications/Annals of Telecommunications, 2003, 58, 266-296. Variable Neighborhood Descent for the Capacitated Clustering Problem. Lecture Notes in Computer	2.1 1.1 1.1	4 4 3

#	Article	IF	CITATIONS
73	Financial planning in the public sector and the Newsvendor problem. Yugoslav Journal of Operations Research, 2018, 28, 265-274.	0.5	1
74	The Role of Chance in Canada's Victory in the 1972 Summit Series. Infor, 2012, 50, 40-43.	0.5	0
75	A New VNS Metaheuristic Using MADS as a Local Optimizer. Journal of Multi-Criteria Decision Analysis, 2012, 19, 257-262.	1.0	0
76	Local and Variable Neighborhood Searches for Solving the Capacitated Clustering Problem. Springer Optimization and Its Applications, 2017, , 33-55.	0.6	0
77	Efficient flow models for the uncapacitated multiple allocation p-hub median problem on non-triangular networks. Computers and Industrial Engineering, 2021, 162, 107723.	3.4	0
78	Maximally Diverse Grouping and Clique Partitioning Problems with Skewed General Variable Neighborhood Search. Springer Proceedings in Mathematics and Statistics, 2016, , 3-38.	0.1	0
79	Neighbourhood Reduction in Global and Combinatorial Optimization: The Case of the p-Centre Problem. Profiles in Operations Research, 2019, , 195-220.	0.3	0