Saad Gomaa Mohamed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1180282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step synthesis of hollow C-NiCo ₂ S ₄ nanostructures for high-performance supercapacitor electrodes. Nanoscale, 2018, 10, 6620-6628.	5.6	278
2	High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo ₂ O ₄ Nanoflakes Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 22701-22708.	8.0	230
3	Ternary Spinel MCo ₂ O ₄ (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium–O ₂ Batteries. ACS Applied Materials & Interfaces, 2015, 7, 12038-12046.	8.0	186
4	3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices. Scientific Reports, 2018, 8, 7988.	3.3	113
5	Spinel-structured FeCo 2 O 4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous and Mesoporous Materials, 2017, 251, 26-33.	4.4	111
6	A 3D walking palm-like core–shell CoMoO ₄ @NiCo ₂ S ₄ @nickel foam composite for high-performance supercapacitors. Dalton Transactions, 2019, 48, 3853-3861.	3.3	103
7	Mesoporous ZnCo2O4 nanoflakes with bifunctional electrocatalytic activities toward efficiencies of rechargeable lithium–oxygen batteries in aprotic media. Nanoscale, 2013, 5, 12115.	5.6	100
8	Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. RSC Advances, 2013, 3, 20143.	3.6	82
9	Uniform growth of Zn-Mn-Co ternary oxide nanoneedles for high-performance energy-storage applications. Journal of Electroanalytical Chemistry, 2019, 837, 39-47.	3.8	79
10	Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications. Journal of Energy Storage, 2020, 32, 101767.	8.1	70
11	Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2019, 71, 250-259.	5.8	66
12	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	4.1	66
13	Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. Journal of Energy Storage, 2021, 36, 102408.	8.1	62
14	Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Advances, 2014, 4, 17230.	3.6	60
15	Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. Surface and Coatings Technology, 2011, 206, 43-50.	4.8	56
16	Preserved crystal phase and morphology: Electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications. Electrochimica Acta, 2020, 340, 135953.	5.2	54
17	Hydrothermal Synthesis of αâ€MnS Nanoflakes@Nitrogen and Sulfur Coâ€doped rGO for Highâ€Performance Hybrid Supercapacitor. ChemistrySelect, 2018, 3, 6061-6072	1.5	53
18	High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. Journal of Energy Storage, 2021, 34, 102001.	8.1	52

#	Article	IF	CITATIONS
19	One-step development of octahedron-like CuCo2O4@Carbon fibers for high-performance supercapacitors electrodes. Journal of Alloys and Compounds, 2020, 842, 155639.	5.5	49
20	MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environmental Chemistry Letters, 2021, 19, 3645-3681.	16.2	48
21	Acyclic and cyclic imines and their metal complexes: recent progress in biomaterials and corrosion applications. RSC Advances, 2018, 8, 23294-23318.	3.6	47
22	One-step, calcination-free synthesis of zinc cobaltite nanospheres for high-performance supercapacitors. Materials Today Energy, 2017, 4, 97-104.	4.7	41
23	A single-step synthesis and direct growth of microspheres containing the nanoflakes-like structure of Zn0.76Co0.24S as a high-performance electrode for supercapacitors. Journal of Energy Storage, 2020, 29, 101349.	8.1	39
24	Facile one-step hydrothermal method for NiCo2S4/rGO nanocomposite synthesis for efficient hybrid supercapacitor electrodes. Materials Chemistry and Physics, 2022, 277, 125554.	4.0	36
25	From waste to value-added products: Evaluation of activated carbon generated from leather waste for supercapacitor applications. Journal of Environmental Management, 2022, 304, 114222.	7.8	35
26	High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries. Electrochimica Acta, 2015, 165, 166-172.	5.2	34
27	CoFe ₂ O ₄ @Carbon Spheres Electrode: A One‣tep Solvothermal Method for Enhancing the Electrochemical Performance of Hybrid Supercapacitors. ChemElectroChem, 2020, 7, 526-534.	3.4	32
28	High-performance electrode materials for supercapacitor applications using Ni-catalyzed carbon nanostructures derived from biomass waste materials. Journal of Energy Storage, 2022, 48, 104034.	8.1	30
29	Facile Synthesis of Mn3O4-rGO Nanocomposite As an Efficient Electrode Material for Application in Supercapacitors. Journal of Electronic Materials, 2019, 48, 4977-4986.	2.2	27
30	High electrochemical energy-storage performance promoted by SnSe nanorods anchored on rGO nanosheets. Journal of Electroanalytical Chemistry, 2021, 883, 115063.	3.8	27
31	Detergent-free micelle-assisted synthesis of carbon-containing hexagonal CuS nanostructures for efficient supercapacitor electrode materials. Electrochimica Acta, 2022, 407, 139918.	5.2	24
32	Growth of 2D nanoflakes from 1D long leaf arrays: Electrochemical influence of copper and nickel co-substituted cobalt oxide. Journal of Energy Storage, 2020, 32, 101871.	8.1	22
33	Carbon and nitrogen co-doped MoS2 nanoflakes as an electrode material for lithium-ion batteries and supercapacitors. Sustainable Materials and Technologies, 2021, 29, e00306.	3.3	20
34	The enhancement of supercapacitors performances of LaMnO3±δ perovskite by Ag-doping. Physica B: Condensed Matter, 2021, 615, 413065.	2.7	18
35	High specific energy supercapacitor electrode prepared from MnS/Ni ₃ S ₂ composite grown on nickel foam. New Journal of Chemistry, 2021, 45, 18641-18650.	2.8	17
36	Synthesis and electrochemical performance of porous FeCo2S4 nanorods as an electrode material for supercapacitor. Journal of Energy Storage, 2021, 44, 103330.	8.1	17

#	Article	IF	CITATIONS
37	Morphology controlling of manganese-cobalt-sulfide nanoflake arrays using polyvinylpyrrolidone capping agent to enhance the performance of hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 624, 494-504.	9.4	17
38	Polyvinylpyrrolidone and freeze drying-assisted growth of an α-Ni(OH) ₂ /reduced graphene oxide hybrid structure as a superior electrode material for supercapacitors. New Journal of Chemistry, 2021, 45, 10012-10020.	2.8	16
39	Snow crystal-like structure of NiSe as a binder-free electrode for high-performance hybrid supercapacitor. Journal of Materials Science, 2022, 57, 9955-9970.	3.7	16
40	A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium. Nanomaterials, 2021, 11, 1867.	4.1	15
41	Synthesis of nanocubic lithium cobalt ferrite toward high-performance lithium-ion battery. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	2.3	15
42	Two Birds with One Stone: Hydrogel-Derived Hierarchical Porous Activated Carbon toward the Capacitive Performance for Symmetric Supercapacitors and Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2022, 10, 4717-4727.	6.7	14
43	Structural engineering of bimetal-organic framework via a direct etching method and conversion to phosphide for electrochemical capacitors. Applied Materials Today, 2020, 20, 100698.	4.3	11
44	Comparison of different methods for <scp>Li₂<i>M</i>Ti₃0₈</scp> (<i>M</i> – Co, Cu, Zn) synthesis. Journal of Chemical Technology and Biotechnology, 2022, 97, 1021-1026.	3.2	10
45	Constructing a Carbon-Encapsulated Carbon Composite Material with Hierarchically Porous Architectures for Efficient Capacitive Storage in Organic Supercapacitors. International Journal of Molecular Sciences, 2022, 23, 6774.	4.1	9
46	Nickel selenide nanorod arrays as an electrode material for lithium-ion batteries and supercapacitors. Journal of Energy Storage, 2022, 53, 105215.	8.1	9
47	Lithium Cobalt Titanate with the Spinel Structure as an Anode Material for Lithium Ion Batteries. Inorganic Materials, 2022, 58, 160-164.	0.8	6
48	Facile synthesis of ZnMoO ₄ /AlPO ₄ -5 nanorod composites as visible-light-driven photocatalysts and high-performance energy storage materials. RSC Advances, 2022, 12, 7120-7132.	3.6	5
49	Corrosion behaviour and bioactivity of electrophoretically deposited hydroxyapatite on titanium in physiological media (Hanks' solution). Materials Science-Poland, 2012, 30, 231-239.	1.0	3
50	Synthesis and Evaluation of Materials for High-Performance Supercapacitators. InterCeram: International Ceramic Review, 2020, 69, 30-37.	0.2	3
51	N-aminophthalimide as a synthon for heterocyclic Schiff bases: Efficient utilization as corrosion inhibitors of mild steel in 0.5 mol.L-1 H2SO4 solution. Egyptian Journal of Chemistry, 2018, 61, 300-310.	0.2	3
52	PREPARATION AND ELECTROCHEMICAL BEHAVIOR OF THE ACTIVATED CARBON FROM POMEGRANATE PEELS AS ENERGY-STORAGE MATERIALS. Al-Azhar Bulletin of Science, 2020, 31, 1-9.	0.1	0