Keith Beven

List of Publications by Citations

Source: https://exaly.com/author-pdf/1180257/keith-beven-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

305 31,705 83 173 g-index

355 34,524 4.4 7.83 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
305	The future of distributed models: Model calibration and uncertainty prediction. <i>Hydrological Processes</i> , 1992 , 6, 279-298	3.3	2986
304	Macropores and water flow in soils. Water Resources Research, 1982, 18, 1311-1325	5.4	1795
303	A manifesto for the equifinality thesis. <i>Journal of Hydrology</i> , 2006 , 320, 18-36	6	1539
302	Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. <i>Journal of Hydrology</i> , 2001 , 249, 11-29	6	1485
301	Changing ideas in hydrology I The case of physically-based models. <i>Journal of Hydrology</i> , 1989 , 105, 157-172	6	1140
300	The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. <i>Hydrological Processes</i> , 1991 , 5, 59-79	3.3	1001
299	Prophecy, reality and uncertainty in distributed hydrological modelling. <i>Advances in Water Resources</i> , 1993 , 16, 41-51	4.7	825
298	Sensitivity analysis of environmental models: A systematic review with practical workflow. <i>Environmental Modelling and Software</i> , 2016 , 79, 214-232	5.2	634
297	Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach. <i>Water Resources Research</i> , 1996 , 32, 2161-2173	5.4	57°
296	Effects of spatial variability and scale with implications to hydrologic modeling. <i>Journal of Hydrology</i> , 1988 , 102, 29-47	6	492
295	Macropores and water flow in soils revisited. Water Resources Research, 2013, 49, 3071-3092	5.4	486
294	Panta RheiEverything FlowsEChange in hydrology and societyThe IAHS Scientific Decade 2013Z022. <i>Hydrological Sciences Journal</i> , 2013 , 58, 1256-1275	3.5	452
293	How far can we go in distributed hydrological modelling?. <i>Hydrology and Earth System Sciences</i> , 2001 , 5, 1-12	5.5	448
292	TOPMODEL: A critique. <i>Hydrological Processes</i> , 1997 , 11, 1069-1085	3.3	397
291	2012,		344
290	On hydrologic similarity: 2. A scaled model of storm runoff production. <i>Water Resources Research</i> , 1987 , 23, 2266-2278	5.4	327
289	Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. <i>Journal of Hydrology</i> , 2005 , 302, 46-69	6	307

(2007-2001)

288	Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). <i>Hydrological Processes</i> , 2001 , 15, 1903-1924	3.3	278
287	Towards a coherent philosophy for modelling the environment. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2002 , 458, 2465-2484	2.4	278
286	DebatesThe future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 2014, 50, 5342-5350	5.4	271
285	Influence of uncertain boundary conditions and model structure on flood inundation predictions. <i>Advances in Water Resources</i> , 2006 , 29, 1430-1449	4.7	266
284	Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. <i>Hydrological Processes</i> , 2002 , 16, 189-206	3.3	262
283	Twenty-three unsolved problems in hydrology (UPH) 🗈 community perspective. <i>Hydrological Sciences Journal</i> , 2019 , 64, 1141-1158	3.5	259
282	A dynamic TOPMODEL. <i>Hydrological Processes</i> , 2001 , 15, 1993-2011	3.3	252
281	Catchment geomorphology and the dynamics of runoff contributing areas. <i>Journal of Hydrology</i> , 1983 , 65, 139-158	6	231
280	Toward a Generalization of the TOPMODEL Concepts: Topographic Indices of Hydrological Similarity. <i>Water Resources Research</i> , 1996 , 32, 2135-2145	5.4	220
279	A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. <i>Journal of Hydrology</i> , 1979 , 44, 169-190	6	217
278	Similarity and scale in catchment storm response. <i>Reviews of Geophysics</i> , 1990 , 28, 1	23.1	213
277	So just why would a modeller choose to be incoherent?. <i>Journal of Hydrology</i> , 2008 , 354, 15-32	6	206
276	Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. <i>Advances in Water Resources</i> , 1998 , 22, 349-365	4.7	197
275	Kinematic subsurface stormflow. Water Resources Research, 1981, 17, 1419-1424	5.4	197
274	The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data. <i>Journal of Hydrology</i> , 1994 , 159, 305-333	6	194
273	Data-based mechanistic modelling and the rainfall-flow non-linearity. <i>Environmetrics</i> , 1994 , 5, 335-363	1.3	190
272	GLUE: 20 years on. <i>Hydrological Processes</i> , 2014 , 28, 5897-5918	3.3	183
271	Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process. <i>Hydrology and Earth System Sciences</i> , 2007 , 11, 460-467	5.5	178

270	WATER FLOW IN SOIL MACROPORES I. AN EXPERIMENTAL APPROACH. <i>Journal of Soil Science</i> , 1981 , 32, 1-13		178	
269	Searching for the Holy Grail of scientific hydrology: <i>Q_t</i> =(<i>S, R, E</i>) <i>A</i> as closure. <i>Hydrology and Earth System Sciences</i> , 2006 , 10, 609-618	5.5	176	
268	Multi-method global sensitivity analysis of flood inundation models. <i>Advances in Water Resources</i> , 2008 , 31, 1-14	4.7	174	
267	On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process. <i>Water Resources Research</i> , 1998 , 34, 787-797	5.4	168	
266	Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. <i>Hydrological Sciences Journal</i> , 2010 , 55, 364-376	3.5	167	
265	Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. <i>Hydrological Processes</i> , 1995 , 9, 507-525	3.3	161	
264	Kinematic Wave Approximation to Infiltration Into Soils With Sorbing Macropores. <i>Water Resources Research</i> , 1985 , 21, 990-996	5.4	161	
263	An Agenda for Land Surface Hydrology Research and a Call for the Second International Hydrological Decade. <i>Bulletin of the American Meteorological Society</i> , 1999 , 80, 2043-2058	6.1	160	
262	Development of a European flood forecasting system. <i>International Journal of River Basin Management</i> , 2003 , 1, 49-59	1.7	155	
261	On red herrings and real herrings: disinformation and information in hydrological inference. <i>Hydrological Processes</i> , 2011 , 25, 1676-1680	3.3	148	
260	A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. <i>Water Resources Research</i> , 2009 , 45,	5.4	141	
259	Use of spatially distributed water table observations to constrain uncertainty in a rainfallEunoff model. <i>Advances in Water Resources</i> , 1998 , 22, 305-317	4.7	141	
258	Equifinality and uncertainty in physically based soil erosion models: application of the GLUE methodology to WEPPEhe Water Erosion Prediction ProjectEor sites in the UK and USA. <i>Earth Surface Processes and Landforms</i> , 2000 , 25, 825-845	3.7	141	
257	Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. <i>Hydrological Sciences Journal</i> , 2016 , 61, 1652-1665	3.5	137	
256	On undermining the science?. <i>Hydrological Processes</i> , 2006 , 20, 3141-3146	3.3	134	
255	A restatement of the natural science evidence concerning catchment-based 'natural' flood management in the UK. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2017 , 473, 20160706	2.4	129	
254	Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. <i>Journal of Hydrology</i> , 2007 , 332, 316-336	6	127	
253	Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error. <i>Journal of Hydrology</i> , 2009 , 367, 93-103	6	126	

(2004-1982)

252	On subsurface stormflow: Predictions with simple kinematic theory for saturated and unsaturated flows. <i>Water Resources Research</i> , 1982 , 18, 1627-1633	5.4	126
251	Bayesian updating of flood inundation likelihoods conditioned on flood extent data. <i>Hydrological Processes</i> , 2004 , 18, 3347-3370	3.3	123
250	On hydrological heterogeneity Catchment morphology and catchment response. <i>Journal of Hydrology</i> , 1988 , 100, 353-375	6	119
249	On subsurface stormflow: an analysis of response times. <i>Hydrological Sciences Journal</i> , 1982 , 27, 505-52	213.5	119
248	Infiltration into a class of vertically non-uniform soils. <i>Hydrological Sciences Journal</i> , 1984 , 29, 425-434	3.5	118
247	Including spatially variable effective soil depths in TOPMODEL. <i>Journal of Hydrology</i> , 1997 , 202, 158-17	2 6	113
246	Towards identifying sources of subsurface flow: A comparison of components identified by a physically based runoff model and those determined by chemical mixing techniques. <i>Hydrological Processes</i> , 1992 , 6, 199-214	3.3	113
245	Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. <i>Hydrology and Earth System Sciences</i> , 2007 , 11, 739-752	5.5	112
244	Estimation of flood inundation probabilities as conditioned on event inundation maps. <i>Water Resources Research</i> , 2003 , 39,	5.4	111
243	A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. <i>Ecological Modelling</i> , 2002 , 155, 127-147	3	108
242	A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities. <i>Water Resources Research</i> , 1989 , 25, 1227-1233	5.4	108
241	Dispersion parameters for undisturbed partially saturated soil. <i>Journal of Hydrology</i> , 1993 , 143, 19-43	6	106
240	Sensitivity to space and time resolution of a hydrological model using digital elevation data. <i>Hydrological Processes</i> , 1995 , 9, 69-81	3.3	106
239	Comment on Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water by Eric F. Wood et al <i>Water Resources Research</i> , 2012 , 48,	5.4	104
238	Flood frequency estimation by continuous simulation under climate change (with uncertainty). <i>Hydrology and Earth System Sciences</i> , 2000 , 4, 393-405	5.5	104
237	On the concept of model structural error. Water Science and Technology, 2005, 52, 167-175	2.2	103
236	On the colour and spin of epistemic error (and what we might do about it). <i>Hydrology and Earth System Sciences</i> , 2011 , 15, 3123-3133	5.5	99
235	Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. <i>Journal of Hydrology</i> , 2004 , 292, 153-172	6	98

234	Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. <i>Journal of Hydrology</i> , 1997 , 195, 256-278	6	95
233	Uncertainty in hydrograph separations based on geochemical mixing models. <i>Journal of Hydrology</i> , 2002 , 255, 90-106	6	95
232	A physically based model of heterogeneous hillslopes: 1. Runoff production. <i>Water Resources Research</i> , 1989 , 25, 1219-1226	5.4	94
231	Bayesian estimation of uncertainty in land surface-atmosphere flux predictions. <i>Journal of Geophysical Research</i> , 1997 , 102, 23991-23999		93
230	Probabilistic flood risk mapping including spatial dependence. <i>Hydrological Processes</i> , 2013 , 27, 1349-1	3633	92
229	Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency. <i>Water Resources Research</i> , 1998 , 34, 3535-3544	5.4	92
228	Runoff Production and Flood Frequency in Catchments of Order n: An Alternative Approach. <i>Water Science and Technology Library</i> , 1986 , 107-131	0.3	91
227	Modelling everything everywhere: a new approach to decision-making for water management under uncertainty. <i>Freshwater Biology</i> , 2012 , 57, 124-132	3.1	89
226	Developing a translational discourse to communicate uncertainty in flood risk between science and the practitioner. <i>Ambio</i> , 2007 , 36, 692-703	6.5	89
225	Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. <i>Journal of Environmental Quality</i> , 2005 , 34, 2263-77	3.4	86
224	Causal models as multiple working hypotheses about environmental processes. <i>Comptes Rendus - Geoscience</i> , 2012 , 344, 77-88	1.4	84
223	Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models. <i>Hydrological Processes</i> , 2010 , 24, 1537-1547	3.3	83
222	Using interactive recession curve analysis to specify a general catchment storage model. <i>Hydrology</i> and Earth System Sciences, 1997 , 1, 101-113	5.5	83
221	On doing better hydrological science. <i>Hydrological Processes</i> , 2008 , 22, 3549-3553	3.3	83
220	Model Calibration and Uncertainty Estimation 2005,		82
219	On the generalized kinematic routing method. Water Resources Research, 1979 , 15, 1238-1242	5.4	82
218	The Geochemical Evolution of Riparian Ground Water in a Forested Piedmont Catchment. <i>Ground Water</i> , 2003 , 41, 913-925	2.4	81
217	New method developed for studying flow on hillslopes. <i>Eos</i> , 1996 , 77, 465-472	1.5	80

216	ASSESSING THE EFFECT OF SPATIAL PATTERN OF PRECIPITATION IN MODELING STREAM FLOW HYDROGRAPHS1. <i>Journal of the American Water Resources Association</i> , 1982 , 18, 823-829	2.1	80	
215	Comment on Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology(by Pietro Mantovan and Ezio Todini. <i>Journal of Hydrology</i> , 2007 , 338, 315-318	6	79	
214	Grasping the unavoidable subjectivity in calibration of flood inundation models: A vulnerability weighted approach. <i>Journal of Hydrology</i> , 2007 , 333, 275-287	6	79	
213	Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. <i>Ecological Modelling</i> , 2005 , 183, 397-409	3	79	
212	Uncertainty assessment of a process-based integrated catchment model of phosphorus. <i>Stochastic Environmental Research and Risk Assessment</i> , 2009 , 23, 991-1010	3.5	77	
211	Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom. <i>Water Resources Research</i> , 2006 , 42,	5.4	77	
210	I believe in climate change but how precautionary do we need to be in planning for the future?. <i>Hydrological Processes</i> , 2011 , 25, 1517-1520	3.3	74	
209	Robert E. Horton's perceptual model of infiltration processes. <i>Hydrological Processes</i> , 2004 , 18, 3447-3	4603	74	
208	A guide to good practice in modeling semantics for authors and referees. <i>Water Resources Research</i> , 2013 , 49, 5092-5098	5.4	71	
207	Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty). <i>Water Resources Research</i> , 2002 , 38, 14-1-14-14	5.4	71	
206	Throughflow and solute transport in an isolated sloping soil block in a forested catchment. <i>Journal of Hydrology</i> , 1991 , 124, 81-99	6	70	
205	The hydrological response of headwater and sideslope areas / La rponse hydrologique des zones de cours suplieurs et des zones de pente lathale. <i>Hydrological Sciences Bulletin Des Sciences Hydrologiques</i> , 1978 , 23, 419-437		70	
204	Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. <i>Hydrological Processes</i> , 2011 , 25, 1784-1799	3.3	69	
203	Towards the use of catchment geomorphology in flood frequency predictions. <i>Earth Surface Processes and Landforms</i> , 1987 , 12, 69-82	3.7	69	
202	Dynamic real-time prediction of flood inundation probabilities. <i>Hydrological Sciences Journal</i> , 1998 , 43, 181-196	3.5	68	
201	On the Variation of Infiltration Into a Homogeneous Soil Matrix Containing a Population of Macropores. <i>Water Resources Research</i> , 1986 , 22, 383-388	5.4	68	
200	On the concept of delivery of sediment and nutrients to stream channels. <i>Hydrological Processes</i> , 2005 , 19, 551-556	3.3	67	
199	Modelling the hydrological response of mediterranean catchments, Prades, Catalonia. The use of distributed models as aids to hypothesis formulation. <i>Hydrological Processes</i> , 1997 , 11, 1287-1306	3.3	66	

198	Application of a Generalized TOPMODEL to the Small Ringelbach Catchment, Vosges, France. <i>Water Resources Research</i> , 1996 , 32, 2147-2159	5.4	66
197	Informal likelihood measures in model assessment: Theoretic development and investigation. <i>Advances in Water Resources</i> , 2008 , 31, 1087-1100	4.7	65
196	Vadose zone flow model uncertainty as conditioned on geophysical data. <i>Ground Water</i> , 2003 , 41, 119-	27.4	65
195	An evaluation of three stochastic rainfall models. <i>Journal of Hydrology</i> , 2000 , 228, 130-149	6	64
194	Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework. <i>Hydrological Processes</i> , 1997 , 11, 1331-1346	3.3	63
193	Temporal variability in phosphorus transfers: classifying concentrationdischarge event dynamics. <i>Hydrology and Earth System Sciences</i> , 2004 , 8, 88-97	5.5	62
192	Integrated modeling of flow and residence times at the catchment scale with multiple interacting pathways. <i>Water Resources Research</i> , 2013 , 49, 4738-4750	5.4	61
191	Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface. <i>Science China Earth Sciences</i> , 2015 , 58, 25-35	4.6	59
190	Rainfall-runoff modelling of a humid tropical catchment: the TOPMODEL approach. <i>Hydrological Processes</i> , 2002 , 16, 231-253	3.3	58
189	Visualization approaches for communicating real-time flood forecasting level and inundation information. <i>Journal of Flood Risk Management</i> , 2010 , 3, 140-150	3.1	55
188	A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting. <i>Advances in Water Resources</i> , 2008 , 31, 1048-1056	4.7	55
187	Concepts of Information Content and Likelihood in Parameter Calibration for Hydrological Simulation Models. <i>Journal of Hydrologic Engineering - ASCE</i> , 2015 , 20,	1.8	53
186	Sensitivity analysis based on regional splits and regression trees (SARS-RT). <i>Environmental Modelling and Software</i> , 2006 , 21, 976-990	5.2	53
185	Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. <i>Science of the Total Environment</i> , 1999 , 236, 191-214	10.2	53
184	Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone. <i>Water Resources Research</i> , 2017 , 53, 942-960	5.4	52
183	On hypothesis testing in hydrology. <i>Hydrological Processes</i> , 2001 , 15, 1655-1657	3.3	52
182	The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human water systems. <i>Hydrological Sciences Journal</i> , 2016 , 61, 1748-1758	3.5	50
181	Discharge and water table predictions using a generalised TOPMODEL formulation. <i>Hydrological Processes</i> , 1997 , 11, 1145-1167	3.3	50

(2003-2000)

180	Flood frequency estimation by continuous simulation (with likelihood based uncertainty estimation). <i>Hydrology and Earth System Sciences</i> , 2000 , 4, 23-34	5.5	50
179	Equifinality and the Problem of Robust Calibration in Nitrogen Budget Simulations. <i>Soil Science Society of America Journal</i> , 1999 , 63, 1934-1941	2.5	50
178	Hillslope hydrographs by the finite element method. <i>Earth Surfaces Processes</i> , 1977 , 2, 13-28		50
177	Interflow 1989 , 191-219		50
176	A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29-km2 scale catchment in the United Kingdom. <i>Hydrological Processes</i> , 2017 , 31, 1734-1748	3.3	49
175	Climate Change: The Need to Consider Human Forcings Besides Greenhouse Gases. <i>Eos</i> , 2009 , 90, 413	1.5	48
174	Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment. <i>Water Resources Research</i> , 2013 , 49, 4792-4806	5.4	47
173	Comment on P ursuing the method of multiple working hypotheses for hydrological modeling b y P. Clark et al <i>Water Resources Research</i> , 2012 , 48,	5.4	47
172	Conditioning uncertainty in ecological models: Assessing the impact of fire management strategies. <i>Ecological Modelling</i> , 2007 , 207, 34-44	3	47
171	Flow and flow routing in upland channel networks / L'Boulement et le calcul du cheminement de l'Boulement dans les rBeaux des canaux montagneux. <i>Hydrological Sciences Bulletin Des Sciences Hydrologiques</i> , 1979 , 24, 303-325		47
170	Do we need a Community Hydrological Model?. Water Resources Research, 2015, 51, 7777-7784	5.4	46
169	Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions. <i>Advances in Water Resources</i> , 2007 , 30, 808-823	4.7	46
168	Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure. <i>Water Science and Application</i> , 2003 , 69-87		46
167	Regionalization as a learning process. Water Resources Research, 2009, 45,	5.4	45
166	Uncertainty in the estimation of critical loads: A practical methodology. <i>Water, Air, and Soil Pollution</i> , 1997 , 98, 297-316	2.6	45
165	Multi-objective parameter conditioning of a three-source wheat canopy model. <i>Agricultural and Forest Meteorology</i> , 2004 , 122, 39-63	5.8	45
164	A discrete particle representation of hillslope hydrology: hypothesis testing in reproducing a tracer experiment at GEdsjE, Sweden. <i>Hydrological Processes</i> , 2011 , 25, 3602-3612	3.3	44
163	Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL. <i>Hydrological Processes</i> , 2003 , 17, 345-362	3.3	44

162	The Predictive Uncertainty of Land Surface Fluxes in Response to Increasing Ambient Carbon Dioxide. <i>Journal of Climate</i> , 2001 , 14, 2551-2562	4.4	44
161	Modelling extreme rainfalls using a modified random pulse BartlettIewis stochastic rainfall model (with uncertainty). <i>Advances in Water Resources</i> , 2000 , 24, 203-211	4.7	44
160	GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application. <i>Water Resources Management</i> , 2009 , 23, 1325-1349	3.7	43
159	The introduction of macroscale hydrological complexity into land surface-atmosphere transfer models and the effect on planetary boundary layer development. <i>Journal of Hydrology</i> , 1995 , 166, 421-	444	43
158	Dynamic TOPMODEL: A new implementation in R and its sensitivity to time and space steps. <i>Environmental Modelling and Software</i> , 2015 , 72, 155-172	5.2	41
157	Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange. <i>Ecological Modelling</i> , 2009 , 220, 3259-3270	3	41
156	Estimation of evapotranspiration at the landscape scale: A fuzzy disaggregation approach. <i>Water Resources Research</i> , 1997 , 33, 2929-2938	5.4	41
155	On model uncertainty, risk and decision making. <i>Hydrological Processes</i> , 2000 , 14, 2605-2606	3.3	41
154	Downstream changes in DOC: Inferring contributions in the face of model uncertainties. <i>Water Resources Research</i> , 2014 , 50, 514-525	5.4	40
153	The limits of splitting: Hydrology. <i>Science of the Total Environment</i> , 1996 , 183, 89-97	10.2	40
153 152	The limits of splitting: Hydrology. <i>Science of the Total Environment</i> , 1996 , 183, 89-97 Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> , 1990 , 46, 249-262	10.2	40
	Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> ,		
152	Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> , 1990 , 46, 249-262 Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model	6.7	40
152 151	Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> , 1990 , 46, 249-262 Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL?. <i>Water Resources Research</i> , 2002 , 38, 39-1-39-11 WATER FLOW IN SOIL MACROPORES III. A STATISTICAL APPROACH. <i>Journal of Soil Science</i> , 1981 ,	6.7	40
152 151 150	Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> , 1990, 46, 249-262 Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL?. <i>Water Resources Research</i> , 2002, 38, 39-1-39-11 WATER FLOW IN SOIL MACROPORES III. A STATISTICAL APPROACH. <i>Journal of Soil Science</i> , 1981, 32, 31-39 Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling.	6.7 5·4	40 39 39
152 151 150	Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> , 1990, 46, 249-262 Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL?. <i>Water Resources Research</i> , 2002, 38, 39-1-39-11 WATER FLOW IN SOIL MACROPORES III. A STATISTICAL APPROACH. <i>Journal of Soil Science</i> , 1981, 32, 31-39 Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling. <i>Hydrological Processes</i> , 2013, 27, 1117-1122	6.7 5·4	40 39 39 38
152 151 150 149	Inferences about solute transport in macroporous forest soils from time series models. <i>Geoderma</i> , 1990, 46, 249-262 Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL?. <i>Water Resources Research</i> , 2002, 38, 39-1-39-11 WATER FLOW IN SOIL MACROPORES III. A STATISTICAL APPROACH. <i>Journal of Soil Science</i> , 1981, 32, 31-39 Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling. <i>Hydrological Processes</i> , 2013, 27, 1117-1122 Surface water hydrologyflunoff generation and basin structure. <i>Reviews of Geophysics</i> , 1983, 21, 721 Comments on generalised likelihood uncertainty estimation. <i>Reliability Engineering and System</i>	6.7 5·4 3·3	40 39 39 38 38

(2019-2018)

144	Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm. <i>Journal of Hydrology</i> , 2018 , 559, 954-971	6	34
143	On hypothesis testing in hydrology: Why falsification of models is still a really good idea. <i>Wiley Interdisciplinary Reviews: Water</i> , 2018 , 5, e1278	5.7	34
142	Functional classification and evaluation of hydrographs based on Multicomponent Mapping (Mx). <i>International Journal of River Basin Management</i> , 2004 , 2, 89-100	1.7	34
141	Regional water balance modelling using flow-duration curves with observational uncertainties. <i>Hydrology and Earth System Sciences</i> , 2014 , 18, 2993-3013	5.5	33
140	So how much of your error is epistemic? Lessons from Japan and Italy. <i>Hydrological Processes</i> , 2013 , 27, 1677-1680	3.3	33
139	Observational data and scale-dependent parameterizations: explorations using a virtual hydrological reality. <i>Hydrological Processes</i> , 2002 , 16, 293-312	3.3	33
138	Conditioning a multiple-patch SVAT Model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data. <i>Water Resources Research</i> , 1999 , 35, 2751-2761	5.4	33
137	On virtual observatories and modelled realities (or why discharge must be treated as a virtual variable). <i>Hydrological Processes</i> , 2012 , 26, 1905-1908	3.3	32
136	The Future of Distributed Modelling. <i>Hydrological Processes</i> , 2002 , 16, 169-172	3.3	32
135	Communicating uncertainty in flood inundation mapping: a case study. <i>International Journal of River Basin Management</i> , 2015 , 13, 285-295	1.7	31
134	Barriers to progress in distributed hydrological modelling. <i>Hydrological Processes</i> , 2015 , 29, 2074-2078	3.3	31
133	Comment on E quifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? b y Jasper A. Vrugt, Cajo J. F. ter Braak, Hoshin V. Gupta and Bruce A. Robinson. <i>Stochastic Environmental Research and Risk Assessment</i> , 2009 , 23, 1059-1060	3.5	31
132	Controls on catchment-scale patterns of phosphorus in soil, streambed sediment, and stream water. <i>Journal of Environmental Quality</i> , 2007 , 36, 694-708	3.4	31
131	Comment on B ayesian recursive parameter estimation for hydrologic models by M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian. <i>Water Resources Research</i> , 2003 , 39,	5.4	31
130	On explanatory depth and predictive power. <i>Hydrological Processes</i> , 2001 , 15, 3069-3072	3.3	31
129	Micro-, Meso-, Macroporosity and Channeling Flow Phenomena in Soils. <i>Soil Science Society of America Journal</i> , 1981 , 45, 1245-1245	2.5	31
128	A Century of Denial: Preferential and Nonequilibrium Water Flow in Soils, 1864-1984. <i>Vadose Zone Journal</i> , 2018 , 17, 180153	2.7	31
127	How to make advances in hydrological modelling 2019 , 50, 1481-1494		30

126	Data-supported robust parameterisations in land surfacelltmosphere flux predictions: towards a top-down approach. <i>Hydrological Processes</i> , 2003 , 17, 2259-2277	3.3	30
125	Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments ©comment. <i>Journal of Hydrology</i> , 1991 , 129, 389-396	6	30
124	Hysteresis and scale in catchment storage, flow and transport. <i>Hydrological Processes</i> , 2015 , 29, 3604-3	635	29
123	On the future of distributed modelling in hydrology. <i>Hydrological Processes</i> , 2000 , 14, 3183-3184	3.3	29
122	A distribution function approach to water flow in soil macropores based on kinematic wave theory. Journal of Hydrology, 1986 , 83, 173-183	6	29
121	Perceptual models of uncertainty for socio-hydrological systems: a flood risk change example. <i>Hydrological Sciences Journal</i> , 2017 , 62, 1705-1713	3.5	28
120	A semi-empirical model to assess uncertainty of spatial patterns of erosion. <i>Catena</i> , 2006 , 66, 198-210	5.8	28
119	Estimating transport parameters at the grid scale: on the value of a single measurement. <i>Journal of Hydrology</i> , 1993 , 143, 109-123	6	28
118	The effect of mole drainage on the hydrological response of a swelling clay soil. <i>Journal of Hydrology</i> , 1983 , 64, 205-223	6	28
117	Towards a methodology for testing models as hypotheses in the inexact sciences. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 20180862	2.4	27
116	On hydrologic similarity: 3. A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation. <i>Water Resources Research</i> , 1990 , 26, 43-58	5.4	27
115	Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity values. <i>Water Resources Research</i> , 1997 , 33, 2097-2101	5.4	26
114	Parameter conditioning and prediction uncertainties of the LISFLOOD-WB distributed hydrological model. <i>Hydrological Sciences Journal</i> , 2006 , 51, 45-65	3.5	26
113	Three-dimensional modelling of hillslope hydrology. <i>Hydrological Processes</i> , 1992 , 6, 347-359	3.3	26
112	Testing a new model of aphid abundance with sedentary and non-sedentary predators. <i>Ecological Modelling</i> , 2009 , 220, 2469-2480	3	25
111	Water Resources Assessment and Regional Virtual Water Potential in the Turpan Basin, China. Water Resources Management, 2010 , 24, 3321-3332	3.7	25
110	Infiltration excess at the Horton Hydrology Laboratory (or not?). Journal of Hydrology, 2004, 293, 219-2	3 ∳	25
109	Environmental Modelling		24

108	Developing observational methods to drive future hydrological science: Can we make a start as a community?. <i>Hydrological Processes</i> , 2020 , 34, 868-873	3.3	24	
107	Epistemic uncertainties and natural hazard risk assessment [Part 1: A review of different natural hazard areas. <i>Natural Hazards and Earth System Sciences</i> , 2018 , 18, 2741-2768	3.9	24	
106	Decision tree for choosing an uncertainty analysis methodology: a wiki experiment http://www.floodrisknet.org.uk/methods http://www.floodrisk.net. <i>Hydrological Processes</i> , 2006 , 20, 3793-3798	3.3	23	
105	Kinematic wave approximation to the initiation of subsurface storm flow in a sloping forest soil. <i>Advances in Water Resources</i> , 1986 , 9, 70-76	4.7	23	
104	A history of the concept of time of concentration. Hydrology and Earth System Sciences, 2020, 24, 2655-	2 <i>6.</i> 70	22	
103	Towards the provision of site specific flood warnings using wireless sensor networks. <i>Meteorological Applications</i> , 2009 , 16, 57-64	2.1	22	
102	Epistemic uncertainties and natural hazard risk assessment [Part´2: What should constitute good practice?. <i>Natural Hazards and Earth System Sciences</i> , 2018 , 18, 2769-2783	3.9	22	
101	What we see now: Event-persistence and the predictability of hydro-eco-geomorphological systems. <i>Ecological Modelling</i> , 2015 , 298, 4-15	3	21	
100	Nature as the "natural" goal for water management: a conversation. <i>Ambio</i> , 2009 , 38, 209-14	6.5	21	
99	A comparison of non-linear least square and GLUE for model calibration and uncertainty estimation for pesticide transport in soils. <i>Advances in Water Resources</i> , 2006 , 29, 1924-1933	4.7	21	
98	Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions. <i>Hydrological Processes</i> , 2001 , 15, 2281-2295	3.3	21	
97	Adaptive forecasting of phytoplankton communities. Water Research, 2018, 134, 74-85	12.5	20	
96	Deep learning, hydrological processes and the uniqueness of place. <i>Hydrological Processes</i> , 2020 , 34, 3608-3613	3.3	19	
95	Digital catchment observatories: A platform for engagement and knowledge exchange between catchment scientists, policy makers, and local communities. <i>Water Resources Research</i> , 2015 , 51, 4815-4	1852 2	19	
94	Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites. Journal of Geophysical Research, 2011 , 116,		19	
93	Robert E. Horton and abrupt rises of ground water. <i>Hydrological Processes</i> , 2004 , 18, 3687-3696	3.3	19	
92	The uncertainty cascade in model fusion. <i>Geological Society Special Publication</i> , 2017 , 408, 255-266	1.7	18	
91	Comparison of a Multiple Interacting Pathways model with a classical kinematic wave subsurface flow solution. <i>Hydrological Sciences Journal</i> , 2012 , 57, 203-216	3.5	18	

90	Hillslope response to sprinkling and natural rainfall using velocity and celerity estimates in a slate-bedrock catchment. <i>Journal of Hydrology</i> , 2018 , 558, 366-379	6	18
89	A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 2589-2605	5.5	17
88	On modelling as collective intelligence. <i>Hydrological Processes</i> , 2001 , 15, 2205-2207	3.3	17
87	Movement of water and the herbicides atrazine and isoproturon through a large structured clay soil core. <i>Journal of Contaminant Hydrology</i> , 1995 , 19, 237-260	3.9	17
86	Models of everywhere revisited: A technological perspective. <i>Environmental Modelling and Software</i> , 2019 , 122, 104521	5.2	16
85	Equipped to deal with uncertainty in climate and impacts predictions: lessons from internal peer review. <i>Climatic Change</i> , 2015 , 132, 1-14	4.5	15
84	Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. <i>Hydrology and Earth System Sciences</i> , 1998 , 2, 51-64	5.5	15
83	Uncertainty assessment of a dominant-process catchment model of dissolved phosphorus transfer. <i>Hydrology and Earth System Sciences</i> , 2016 , 20, 4819-4835	5.5	15
82	Integration of hillslope hydrology and 2D hydraulic modelling for natural flood management 2019 , 50, 1535-1548		14
81	Determining E. coli burden on pasture in a headwater catchment: combined field and modelling approach. <i>Environment International</i> , 2012 , 43, 6-12	12.9	14
80	Application of data-based mechanistic modelling for flood forecasting at multiple locations in the Eden catchment in the National Flood Forecasting System (England and Wales). <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 177-185	5.5	14
79	Preface to the special section on Scale Problems in Hydrology. Water Resources Research, 1997, 33, 288	1 <u>5</u> 2,β81	l 14
78	On environmental models of everywhere on the GRID. <i>Hydrological Processes</i> , 2003 , 17, 171-174	3.3	14
77	Communicating uncertainty in flood risk mapping 2012 ,		14
76	A history of TOPMODEL. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 527-549	5.5	14
75	A fuzzy decision tree to predict phosphorus export at the catchment scale. <i>Journal of Hydrology</i> , 2006 , 331, 484-494	6	13
74	Uncertainty in flood estimation. Structure and Infrastructure Engineering, 2009, 5, 325-332	2.9	12
73	On fire and rain (or predicting the effects of change). <i>Hydrological Processes</i> , 2001 , 15, 1397-1399	3.3	12

72	Hillslope runoff processes and flood frequency characteristics 2020 , 187-202		12
71	Advice to a young hydrologist. <i>Hydrological Processes</i> , 2016 , 30, 3578-3582	3.3	12
70	Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. <i>Soil Use and Management</i> , 2013 , 29, 187-198	3.1	11
69	Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin. <i>Physics and Chemistry of the Earth</i> , 2008 , 33, 1090-1094	3	11
68	Does an interagency meeting in Washington imply uncertainty?. <i>Hydrological Processes</i> , 2004 , 18, 1747-	-13.50	11
67	A landslip/debris flow in bilsdale, North York Moors, September 1976. <i>Earth Surfaces Processes</i> , 1978 , 3, 407-419		11
66	Epistemic uncertainties and natural hazard risk assessment Part 1: A review of the issues		11
65	Exploratory studies into seasonal flow forecasting potential for large lakes. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 127-141	5.5	11
64	Velocities, celerities and the basin of attraction in catchment response. <i>Hydrological Processes</i> , 2015 , 29, 5214-5226	3.3	10
63	Here we have a system in which liquid water is moving; let's just get at the physics of it[[Penman 1965] 2014 , 45, 727-736		10
62	Reduced Order Emulation of Distributed Hydraulic Simulation Models. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 1762-1767		10
61	On landscape space to model space mapping. <i>Hydrological Processes</i> , 2001 , 15, 323-324	3.3	10
60	Comments on A stochastic-conceptual analysis of rainfall-runoff processes on a hillslopeDby R. Allan Freeze. <i>Water Resources Research</i> , 1981 , 17, 431-432	5.4	10
59	A method for uncertainty constraint of catchment discharge and phosphorus load estimates. <i>Hydrological Processes</i> , 2018 , 32, 2779-2787	3.3	10
58	Comparison of saturated areas mapping methods in the Jizera Mountains, Czech Republic. <i>Journal of Hydrology and Hydromechanics</i> , 2014 , 62, 160-168	2.1	9
57	Reproducing an extreme flood with uncertain post-event information. <i>Hydrology and Earth System Sciences</i> , 2017 , 21, 3597-3618	5.5	9
56	Vegetation pattern as an indicator of saturated areas in a Czech headwater catchment. <i>Hydrological Processes</i> , 2014 , 28, 5297-5308	3.3	9
55	Uncertainty analysis of the rainfall runoff model LisFlood within the Generalized Likelihood Uncertainty Estimation (GLUE). <i>International Journal of River Basin Management</i> , 2004 , 2, 123-133	1.7	9

54	On the Value of Local Measurements for Prediction of Pesticide Transport at the Field Scale. <i>Vadose Zone Journal</i> , 2006 , 5, 222-233	2.7	8
53	Invalidation of Models and Fitness-for-Purpose: A Rejectionist Approach. <i>Simulation Foundations, Methods and Applications</i> , 2019 , 145-171	0.6	8
52	Constraining uncertainty and process-representation in an algal community lake model using high frequency in-lake observations. <i>Ecological Modelling</i> , 2017 , 357, 1-13	3	7
51	Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data. <i>Hydrology and Earth System Sciences</i> , 2017 , 21, 6425-6444	5.5	7
50	A disaggregating approach to describe overland flow occurrence within a catchment. <i>Journal of Hydrology</i> , 2006 , 323, 22-40	6	7
49	Towards the hydraulics of the hydroinformatics era. <i>Journal of Hydraulic Research/De Recherches Hydrauliques</i> , 2003 , 41, 331-336	1.9	7
48	Searching for the Holy Grail of Scientific Hydrology: <i>Q_t= H(S<-R<-)A</i> as closure</i>		7
47	On the colour and spin of epistemic error (and what we might do about it)		7
46	Assessing the significance of wet-canopy evaporation from forests during extreme rainfall events for flood mitigation in mountainous regions of the United Kingdom. <i>Hydrological Processes</i> , 2020 , 34, 4740-4754	3.3	7
45	Perceptual perplexity and parameter parsimony. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1530	5.7	7
44	Long-term variations in the net inflow record for Lake Malawi 2017 , 48, 851-866		6
43	Estimating phosphorus delivery from land to water in headwater catchments using a fuzzy decision tree approach. <i>Soil Use and Management</i> , 2013 , 29, 175-186	3.1	6
42	The era of infiltration. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 851-866	5.5	6
41	Event and model dependent rainfall adjustments to improve discharge predictions. <i>Hydrological Sciences Journal</i> , 2017 , 62, 232-245	3.5	5
40	Following tracer through the unsaturated zone using a multiple interacting pathways model: Implications from laboratory experiments. <i>Hydrological Processes</i> , 2019 , 33, 2300-2313	3.3	5
39	Strategies for Testing the Impact of Natural Flood Risk Management Measures 2017 ,		5
38	Reply to The emergence of a new kind of relativism in environmental modelling: a commentary by Philippe Baveye. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2004 , 460, 2147-2151	2.4	5
37	Tribune Libre : L'unicit[de lieu, d'action et de temps. <i>Revue Des Sciences De Ll</i> Eau, 2001 , 14, 525-533	0.2	5

36	Computationally efficient flood water level prediction (with uncertainty) 2008, 281-289		5
35	Gauging the ungauged basin: how many discharge measurements are needed?		5
34	Issues in generating stochastic observables for hydrological models. <i>Hydrological Processes</i> , 2021 , 35, e14203	3.3	5
33	Technical note: Hydrology modelling R packages h unified analysis of models and practicalities from a user perspective. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 3937-3973	5.5	5
32	Knowledge gaps in our perceptual model of Great Britain's hydrology. <i>Hydrological Processes</i> , 2021 , 35, e14288	3.3	5
31	TOPMODEL: A critique 1997 , 11, 1069		5
30	Validation and Equifinality. Simulation Foundations, Methods and Applications, 2019, 791-809	0.6	4
29	What Really Happens at the End of the Rainbow? [Paying the Price for Reducing Uncertainty (Using Reverse Hydrology Models). <i>Procedia Engineering</i> , 2016 , 154, 1333-1340		4
28	Nierji reservoir flood forecasting based on a Data-Based Mechanistic methodology. <i>Journal of Hydrology</i> , 2018 , 567, 227-237	6	4
27	Rainfall-Runoff Modeling: Introduction 2005,		3
26	Reply [to flomments on fine subsurface stormflow: Prediction with simple kinematic theory for saturated and unsaturated flows by Keith Beven water Resources Research, 1987, 23, 749-749	5.4	3
25	GLUE based marine X-band weather radar data calibration and uncertainty estimation. <i>Urban Water Journal</i> , 2015 , 12, 283-294	2.3	2
25		2.3	2
	Journal, 2015 , 12, 283-294	2.3	
24	Struggling with Epistemic Uncertainties in Environmental Modelling of Natural Hazards 2014 ,	2.3	2
24	Struggling with Epistemic Uncertainties in Environmental Modelling of Natural Hazards 2014 , Hydrological Modelling 2015 , 216-239	2.3	2
24 23 22	Struggling with Epistemic Uncertainties in Environmental Modelling of Natural Hazards 2014, Hydrological Modelling 2015, 216-239 A Framework for Uncertainty Analysis 2014, 39-59		2 2

18	Epistemic uncertainties and natural hazard risk assessment (Part 2: Different natural hazard areas		2
17	Epistemic uncertainties and natural hazard risk assessment. 2. What should constitute good practice?		2
16	Distributed Models and Uncertainty in Flood Risk Management289-312		2
15	Epistemic uncertainties and natural hazard risk assessment. 1. A review of different natural hazard areas 2017 ,		1
14	Using micro-catchment experiments for multi-local scale modelling of nature-based solutions. Hydrological Processes,e14418	3.3	1
13	Uncertainty Estimation in Phosphorus Models 2006 , 131-160		1
12	Adaptive correction of deterministic models to produce accurate probabilistic forecasts		1
11	Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework 1997 , 11, 1331		1
10	An epistemically uncertain walk through the rather fuzzy subject of observation and model uncertainties1. <i>Hydrological Processes</i> , 2021 , 35, e14012	3.3	1
9	On the concept of model structural error. <i>Water Science and Technology</i> , 2005 , 52, 167-75	2.2	1
8	The GLUE Methodology for Model Calibration with Uncertainty 2014 , 87-97		0
7	Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 6115-6134	6.8	O
6	UNCERTAINTY IN THE ESTIMATION OF CRITICAL LOADS: A PRACTICAL METHODOLOGY. <i>Water, Air, and Soil Pollution,</i> 1997 , 98, 297-316	2.6	
5	Fuzzy rule-based model for contaminant transport in a natural river channel. <i>Journal of Hydroinformatics</i> , 2002 , 4, 53-62	2.6	
4	Fuzzy rules based model for solute dispersion in an open channel dead zone. <i>Journal of Hydroinformatics</i> , 2002 , 4, 39-51	2.6	
3	Looking Towards the Future366-378		
2	Terrestrial Hydrological Processes100-134		
1	Reply to Discussion of P erceptual models of uncertainty for socio-hydrological systems: a flood risk change example [®] View all notes. <i>Hydrological Sciences Journal</i> , 2018 , 63, 2001-2003	3.5	