Deling Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1180081/publications.pdf Version: 2024-02-01

DELINC YUAN

#	Article	IF	CITATIONS
1	Peracetic Acid Activated with Electro-Fe2+ Process for Dye Removal in Water. Coatings, 2022, 12, 466.	2.6	6
2	β-Lactoglobulin amyloid fibrils supported Fe(III) to activate peroxydisulfate for organic pollutants elimination. Separation and Purification Technology, 2022, 289, 120806.	7.9	10
3	Molybdenum co-catalytic promotion for Fe3+/peroxydisulfate process: performance, mechanism, and immobilization. Chemical Engineering Journal, 2022, 438, 135656.	12.7	21
4	Application of inorganic materials as heterogeneous cocatalyst in Fenton/Fenton-like processes for wastewater treatment. Separation and Purification Technology, 2022, 295, 121293.	7.9	57
5	Humic Acid Removal in Water via UV Activated Sodium Perborate Process. Coatings, 2022, 12, 885.	2.6	5
6	MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation. Separation and Purification Technology, 2021, 255, 117690.	7.9	106
7	Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation. Chemosphere, 2021, 268, 129315.	8.2	123
8	Ferric ion-ascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment: Optimized by response surface method. Chinese Chemical Letters, 2021, 32, 3387-3392.	9.0	63
9	Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination. Separation and Purification Technology, 2021, 276, 119317.	7.9	39
10	MoS2 co-catalysis promoted CaO2 Fenton-like process: Performance and mechanism. Separation and Purification Technology, 2021, 276, 119289.	7.9	42
11	All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 2020, 31, 547-550.	9.0	96
12	Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chemical Engineering Journal, 2020, 384, 123350.	12.7	162
13	Persulfate Promoted ZnIn2S4 Visible Light Photocatalytic Dye Decomposition. International Journal of Electrochemical Science, 2020, 15, 8761-8770.	1.3	58
14	Ferrous ion-tartaric acid chelation promoted calcium peroxide fenton-like reactions for simulated organic wastewater treatment. Journal of Cleaner Production, 2020, 268, 122253.	9.3	84
15	Elimination of humic acid in water: comparison of UV/PDS and UV/PMS. RSC Advances, 2020, 10, 17627-17634.	3.6	64
16	Fe3+-sulfite complexation enhanced persulfate Fenton-like process for antibiotic degradation based on response surface optimization. Science of the Total Environment, 2020, 727, 138773.	8.0	67
17	Enhancing CaO2 fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment. Water Research, 2019, 163, 114861.	11.3	200
18	Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance. Chemical Engineering Journal, 2019, 375, 122093.	12.7	82

Deling Yuan

#	Article	lF	CITATIONS
19	Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance: Simultaneous dye removal and electricity generation. Chemosphere, 2019, 234, 658-667.	8.2	89
20	Improved degradation of anthraquinone dye by electrochemical activation of PDS. Ecotoxicology and Environmental Safety, 2019, 177, 77-85.	6.0	67
21	Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. Journal of Hazardous Materials, 2019, 366, 669-676.	12.4	101
22	One-Step Polyoxometalates-Assisted Synthesis of Manganese Dioxide for Asymmetric Supercapacitors with Enhanced Cycling Lifespan. ACS Sustainable Chemistry and Engineering, 2019, 7, 258-264.	6.7	38
23	Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell. Electrochimica Acta, 2019, 298, 59-69.	5.2	95
24	Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon. Plasma Science and Technology, 2019, 21, 025504.	1.5	24
25	Degradation of phenol using a combination of granular activated carbon adsorption and bipolar pulse dielectric barrier discharge plasma regeneration. Plasma Science and Technology, 2018, 20, 054013.	1.5	12
26	Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water. Chemical Engineering Journal, 2018, 337, 446-454.	12.7	109
27	Improved dye removal and simultaneous electricity production in a photocatalytic fuel cell coupling with persulfate activation. Electrochimica Acta, 2018, 270, 330-338.	5.2	73
28	Evaluation of antibiotic oxytetracycline removal in water using a gas phase dielectric barrier discharge plasma. Journal of Environmental Management, 2018, 226, 22-29.	7.8	48
29	Mesoporous manganese oxide with large specific surface area for high-performance asymmetric supercapacitor with enhanced cycling stability. Chemical Engineering Journal, 2017, 324, 35-43.	12.7	80
30	Asymmetric capacitors based on TiO2 and mesoporous MnO2 electrodes using neutral aqueous electrolyte. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	9
31	Hydrogen peroxide generation during regeneration of granular activated carbon by bipolar pulse dielectric barrier discharge plasma. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78, 178-184.	5.3	6
32	Adsorbability Enhancement of Macroporous Resin by Dielectric Barrier Discharge Plasma Treatment to Phenol in Water. Journal of Chemistry, 2016, 2016, 1-8.	1.9	2
33	Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation. Environmental Science and Pollution Research, 2016, 23, 18800-18808.	5.3	44
34	A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions. Journal of Catalysis, 2014, 309, 268-279.	6.2	68
35	Effect of surface Lewis acidity on selective catalytic reduction of NO by C3H6 over calcined hydrotalcite. Applied Catalysis A: General, 2013, 451, 176-183.	4.3	55
36	Preparation and characterization of Ni-Ti-O mixed oxide for selective catalytic reduction of NO under lean-burn conditions. Chinese Journal of Catalysis, 2013, 34, 1449-1455.	14.0	8

#	Article	IF	CITATIONS
37	Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: In situ FTIR investigation. Journal of Hazardous Materials, 2012, 241-242, 472-477.	12.4	37
38	Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal. Journal of Hazardous Materials, 2010, 184, 704-709.	12.4	64