Dmitry G Buslovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1180044/publications.pdf

Version: 2024-02-01

933447 1058476 52 250 10 14 citations g-index h-index papers 52 52 52 142 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High Performance Polymer Composites: A Role of Transfer Films in Ensuring Tribological Properties—A Review. Polymers, 2022, 14, 975.	4.5	14
2	Effect of Transfer Film on Tribological Properties of Anti-Friction PEI- and PI-Based Composites at Elevated Temperatures. Polymers, 2022, 14, 1215.	4.5	8
3	Estimating Low- and High-Cyclic Fatigue of Polyimide-CF-PTFE Composite through Variation of Mechanical Hysteresis Loops. Materials, 2022, 15, 4656.	2.9	11
4	Effect of Various Type of Nanoparticles on Mechanical and Tribological Properties of Wear-Resistant PEEK + PTFE-Based Composites. Materials, 2021, 14, 1113.	2.9	13
5	UHMWPE-Based Glass-Fiber Composites Fabricated by FDM. Multiscaling Aspects of Design, Manufacturing and Performance. Materials, 2021, 14, 1515.	2.9	4
6	Two-component feedstock based on ultra-high molecular weight polyethylene for additive manufacturing of medical products. Advanced Industrial and Engineering Polymer Research, 2021, 4, 235-235.	4.7	1
7	Experimental—FEM Study on Effect of Tribological Load Conditions on Wear Resistance of Three-Component High-Strength Solid-Lubricant PI-Based Composites. Polymers, 2021, 13, 2837.	4.5	11
8	Wear-Resistant Glass-Filled Composites Based on Ultrahigh-Molecular-Weight Polyethylene. Role of Adhesion Varied with Coupling Agents. Physical Mesomechanics, 2021, 24, 548-560.	1.9	2
9	Three-Component Wear-Resistant PEEK-Based Composites Filled with PTFE and MoS2: Composition Optimization, Structure Homogenization, and Self-Iubricating Effect. Springer Tracts in Mechanical Engineering, 2021, , 275-299.	0.3	0
10	Development of an Optimal Composition of Three-Species High-Strength Wear-Resistant Composites Based on Polyimide. Prikladnaâ Mehanika, TehniÄeskaâ Fizika, 2021, 62, 162-171.	0.0	0
11	DEVELOPMENT OF AN OPTIMAL COMPOSITION OF THREE-COMPONENT HIGH-STRENGTH WEAR-RESISTANT COMPOSITES BASED ON POLYIMIDE. Journal of Applied Mechanics and Technical Physics, 2021, 62, 1028-1036.	0.5	0
12	The Role of Elastic Recovery in Formation of Tribological Properties of Ultra-High-Molecular Weight Polyethylene with Various Sizes of Initial Powder. Russian Physics Journal, 2020, 63, 867-876.	0.4	1
13	Antifriction and Mechanical Properties of the Thermoplastic Matrix of Polyetheretherketone-Based Composites. Journal of Friction and Wear, 2020, 41, 310-317.	0.5	2
14	The effect of annealing of milled carbon fibers on the mechanical and tribological properties of solidâ€lubricant thermoplastic polyimideâ€based composites. Polymer Engineering and Science, 2020, 60, 2735-2748.	3.1	13
15	The Effect of Physical-Chemical Nature of UHMWPE and PPS Thermoplastic Matrices on the Formation of Mechanical and Tribological Properties of their Carbon Fiber Filled Composites. Russian Physics Journal, 2020, 63, 554-562.	0.4	5
16	Multicomponent Antifriction Composite Based on Extrudable Matrix "UHMWPE - HDPE-g-VTMS - PP―for Additive Manufacturing. IOP Conference Series: Materials Science and Engineering, 2020, 795, 012001.	0.6	0
17	Taguchi Optimization of Parameters for Feedstock Fabrication and FDM Manufacturing of Wear-Resistant UHMWPE-Based Composites. Materials, 2020, 13, 2718.	2.9	19
18	Development of a Wear-Resistant Extrudable Composite Material Based on an Ultrahigh-Molecular Polyethylene with Predetermined Properties. Mechanics of Composite Materials, 2020, 56, 15-26.	1.4	8

#	Article	IF	CITATIONS
19	Design of Wear-Resistant UHMWPE-Based Composites Loaded with Wollastonite Microfibers Treated with Various Silane Coupling Agents. Applied Sciences (Switzerland), 2020, 10, 4511.	2.5	6
20	Comparative Analysis of Tribological and Mechanical Properties of Extrudable Polymer–Polymer UHMWPE Composites Fabricated by 3D Printing and Hot-Pressing Methods. Journal of Friction and Wear, 2020, 41, 228-235.	0.5	7
21	Increasing Wear Resistance of UHMWPE by Loading Enforcing Carbon Fibers: Effect of Irreversible and Elastic Deformation, Friction Heating, and Filler Size. Materials, 2020, 13, 338.	2.9	19
22	Effect of Adhesion on Mechanical and Tribological Properties of Glass Fiber Composites, Based on Ultra-High Molecular Weight Polyethylene Powders with Various Initial Particle Sizes. Materials, 2020, 13, 1602.	2.9	29
23	Thermal oxidation of the Ti–6Al–4V/TiC titanium composite fabricated by laser metal deposition. AIP Conference Proceedings, 2020, , .	0.4	2
24	Mechanical and tribological properties of thermoplastic polyimide based composites loaded with various PTFE fillers. AIP Conference Proceedings, 2020, , .	0.4	0
25	Mechanical and tribological properties of thermoplastic polyetheretherketone based nanocomposites. AIP Conference Proceedings, 2020, , .	0.4	1
26	A combined method for increasing wear resistance of Ti-6Al-4V parts fabricated by additive manufacturing. AIP Conference Proceedings, 2020, , .	0.4	1
27	Mechanical and tribological properties of polyimide based composites reinforced with surface-modified short carbon and glass fibers. AIP Conference Proceedings, 2020, , .	0.4	1
28	Design of polymer composites based on visualization of experimental data. AIP Conference Proceedings, 2020, , .	0.4	0
29	Development of Two-Component Polymer-Polymeric Composites Based on UHMWPE-PP Blends for Additive Manufacturing. Journal of Physics: Conference Series, 2019, 1260, 062017.	0.4	1
30	Efficiency of glass fibers functionalization with different silane-containing modifiers for improving mechanical and tribotechnical properties of ultra-high-molecular weight polyethylene composites. AIP Conference Proceedings, 2019, , .	0.4	1
31	Effect of ultrasonic impact treatment on mechanical properties of 3D-printed Ti-6Al-4V titanium alloy parts. AIP Conference Proceedings, 2019, , .	0.4	5
32	Structure and tribomechanical properties of extrudable ultra-high molecular weight polyethylene composites fabricated by 3D-printing. AIP Conference Proceedings, 2019, , .	0.4	2
33	Structure, as well as the Tribological and Mechanical Properties, of Extrudable Polymer-Polymeriѕ UHMWPE Composites for 3D Printing. Journal of Friction and Wear, 2019, 40, 107-115.	0.5	9
34	Computer-Aided Design of the Composition of Extrudable Polymer–Polymer UHMWPE Composites with Specified Antifriction and Mechanical Properties. Journal of Friction and Wear, 2019, 40, 501-510.	0.5	3
35	Structure and tribomechanical properties of multicomponent extrudable "UHMWPE-HDPE-g-SMA-PP― composites fabricated by fused deposition modeling. AIP Conference Proceedings, 2019, , .	0.4	0
36	Effect of UHMWPE powder size onto tribological and mechanical properties of composites loaded with functionalized chopped glass fibers. AIP Conference Proceedings, 2019, , .	0.4	0

#	Article	IF	CITATIONS
37	Effect of type and size of KH550 modified filler on mechanical and tribotechnical properties of UHMWPE composites. AIP Conference Proceedings, 2019, , .	0.4	1
38	Mechanical and tribotechnical properties of polyimide based solid lubricant composites. AIP Conference Proceedings, 2019, , .	0.4	7
39	Effect of oxidation on wear resistance of 3D-printed titanium alloy Ti-6Al-4V parts. AIP Conference Proceedings, 2019, , .	0.4	1
40	Solid-Lubricant, Polymer – Polymeric and Functionalized Fiber– and Powder Reinforced Composites of Ultra-High Molecular Weight Polyethylene. IOP Conference Series: Earth and Environmental Science, 2018, 115, 012010.	0.3	4
41	Comparison of structure and tribotechnical properties of extrudable UHMWPE composites fabricated by HIP and FDM techniques. AIP Conference Proceedings, 2018, , .	0.4	7
42	Experimental-theoretical design of multicomponent UHMWPE composites with prescribed mechanical and tribotechnical properties. AIP Conference Proceedings, $2018, , .$	0.4	0
43	Wear-resistant polyetheretherketone composites. Materials Today: Proceedings, 2018, 5, 25976-25982.	1.8	11
44	Impact of modification induced surface structure changes upon deformation behavior of polymer grafts under cyclic contact loading. AIP Conference Proceedings, 2018, , .	0.4	0
45	Structure and tribomechanical properties of polymer compacts fabricated by ultrasonic consolidation and compression moulding of UHMWPE powder. AIP Conference Proceedings, 2018, , .	0.4	3
46	The role of permolecular structure in the tribomechanical performance of extrudable polymer components of ultrahigh molecular weight polyethylene. AIP Conference Proceedings, 2018, , .	0.4	3
47	Effects of basalt fibers and particles in providing tribotechnical properties of UHMWPE composites under varying wear test conditions. AIP Conference Proceedings, 2018, , .	0.4	0
48	Influence of loading short carbon fibers (CF) on tribotechnical properties of UHMWPE composites at various testing conditions. AIP Conference Proceedings, 2018, , .	0.4	0
49	MECHANICAL AND TRIBOTECHNICAL PROPERTIES OF MULTICOMPONENT SOLID LUBRICANT COMPOSITES BASED ON ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE. ChemChemTech, 2018, 61, .	0.3	1
50	Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene. AIP Conference Proceedings, 2017, , .	0.4	2
51	Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene. AIP Conference Proceedings, 2017, , .	0.4	11
52	Three-Component Composite Based on Ultra-High Molecular Weight Polyethylene for Additive Manufacturing. Key Engineering Materials, 0, 839, 26-31.	0.4	0