Taichi Kawamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
2	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	3.7	238
3	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	5.4	207
4	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	5.4	194
5	Seismic detection of the martian core. Science, 2021, 373, 443-448.	6.0	169
6	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	5.4	161
7	The Marsquake catalogue from InSight, sols 0–478. Physics of the Earth and Planetary Interiors, 2021, 310, 106595.	0.7	97
8	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	3.7	88
9	Detection, Analysis, and Removal of Glitches From InSight's Seismic Data From Mars. Earth and Space Science, 2020, 7, e2020EA001317.	1.1	75
10	Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers. Space Science Reviews, 2017, 211, 429-455.	3.7	65
11	Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Physics of the Earth and Planetary Interiors, 2021, 310, 106597.	0.7	64
12	Lunar Seismology: An Update on Interior Structure Models. Space Science Reviews, 2019, 215, 1.	3.7	60
13	Lunar Seismology: A Data and Instrumentation Review. Space Science Reviews, 2020, 216, 1.	3.7	59
14	Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission. Space Science Reviews, 2017, 211, 457-483.	3.7	53
15	Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion. Space Science Reviews, 2017, 211, 501-524.	3.7	49
16	Impact-Seismic Investigations of the InSight Mission. Space Science Reviews, 2018, 214, 1.	3.7	48
17	The present-day flux of large meteoroids on the lunar surface—A synthesis of models and observational techniques. Planetary and Space Science, 2012, 74, 179-193.	0.9	46
18	Subsurface Structure at the InSight Landing Site From Compliance Measurements by Seismic and Meteorological Experiments. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006387.	1.5	44

TAICHI KAWAMURA

#	Article	IF	CITATIONS
19	First Focal Mechanisms of Marsquakes. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006546.	1.5	43
20	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	3.7	41
21	Highâ€Frequency Seismic Events on Mars Observed by InSight. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006670.	1.5	40
22	Seismometer Detection of Dust Devil Vortices by Ground Tilt. Bulletin of the Seismological Society of America, 2015, 105, 3015-3023.	1.1	39
23	Presentâ€Day Mars' Seismicity Predicted From 3â€D Thermal Evolution Models of Interior Dynamics. Geophysical Research Letters, 2018, 45, 2580-2589.	1.5	35
24	The Polarization of Ambient Noise on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006545.	1.5	33
25	A Comodulation Analysis of Atmospheric Energy Injection Into the Ground Motion at InSight, Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006538.	1.5	33
26	Analysis of Regolith Properties Using Seismic Signals Generated by InSight's HP3 Penetrator. Space Science Reviews, 2017, 211, 315-337.	3.7	31
27	Pressure Effects on the SEISâ€InSight Instrument, Improvement of Seismic Records, and Characterization of Long Period Atmospheric Waves From Ground Displacements. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006278.	1.5	31
28	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.	1.5	30
29	The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2022, 2, 88-99.	1.3	29
30	Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state. Journal of Geophysical Research E: Planets, 2017, 122, 1487-1504.	1.5	27
31	Timing and duration of mare volcanism in the central region of the northern farside of the Moon. Earth, Planets and Space, 2011, 63, 5-13.	0.9	25
32	Magnitude Scales for Marsquakes Calibrated from InSight Data. Bulletin of the Seismological Society of America, 2021, 111, 3003-3015.	1.1	25
33	A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006382.	1.5	24
34	Energy Envelope and Attenuation Characteristics of High-Frequency (HF) and Very-High-Frequency (VF) Martian Events. Bulletin of the Seismological Society of America, 2021, 111, 3016-3034.	1.1	23
35	Super High Frequency Events: A New Class of Events Recorded by the InSight Seismometers on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006599.	1.5	19
36	Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. Tectonophysics, 2022, 837, 229434.	0.9	18

TAICHI KAWAMURA

#	Article	IF	CITATIONS
37	Scattering Attenuation of the Martian Interior through Coda-Wave Analysis. Bulletin of the Seismological Society of America, 2021, 111, 3035-3054.	1.1	17
38	MSS/1: Singleâ€Station and Singleâ€Event Marsquake Inversion. Earth and Space Science, 2020, 7, e2020EA001118.	1.1	16
39	Resonances of the InSight Seismometer on Mars. Bulletin of the Seismological Society of America, 2021, 111, 2951-2963.	1.1	15
40	Anatomy of Continuous Mars SEIS and Pressure Data from Unsupervised Learning. Bulletin of the Seismological Society of America, 2021, 111, 2964-2981.	1.1	14
41	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	1.8	13
42	Sublimation's impact on temporal change of albedo dichotomy on lapetus. Icarus, 2011, 214, 596-605.	1.1	9
43	Lunar Surface Gravimeter as a lunar seismometer: Investigation of a new source of seismic information on the Moon. Journal of Geophysical Research E: Planets, 2015, 120, 343-358.	1.5	9
44	Numerical Simulation of Lunar Seismic Wave Propagation: Investigation of Subsurface Scattering Properties Near Apollo 12 Landing Site. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006406.	1.5	9
45	X-Ray Fluorescence Spectrometry of Lunar Surface by XRS Onboard SELENE (Kaguya). Transactions of the Japan Society for Aeronautical and Space Sciences Space Technology Japan, 2009, 7, Tk_39-Tk_42.	0.2	9
46	Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 2022, 6, 59-64.	4.2	9
47	Cratering asymmetry on the Moon: New insight from the Apollo Passive Seismic Experiment. Geophysical Research Letters, 2011, 38, .	1.5	8
48	NASA's InSight mission on Mars—first glimpses of the planet's interior from seismology. Nature Communications, 2020, 11, 1451.	5.8	8
49	Simulation of Seismic Wave Propagation on Asteroid Ryugu Induced by The Impact Experiment of The Hayabusa2 Mission: Limited Mass Transport by Low Yield Strength of Porous Regolith. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006594.	1.5	8
50	Designing a torque-less wind shield for broadband observation of marsquakes. Planetary and Space Science, 2014, 104, 288-294.	0.9	7
51	Mars' Background Free Oscillations. Space Science Reviews, 2019, 215, 1.	3.7	7
52	Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars. Bulletin of the Seismological Society of America, 2019, 109, 1125-1147.	1.1	7
53	Lagrangianâ€based Simulations of Hypervelocity Impact Experiments on Mars Regolith Proxy. Geophysical Research Letters, 2020, 47, e2020GL087393.	1.5	7
54	Low dispersion spectra of lunar impact flashes in 2018 Geminids. Planetary and Space Science, 2021, 195, 105131.	0.9	7

Taichi Kawamura

#	Article	lF	CITATIONS
55	Numerical Simulations of the Apollo Sâ€₩B Artificial Impacts on the Moon. Earth and Space Science, 2021, 8, e2021EA001887.	1.1	7
56	The Lunar Geophysical Network Landing Sites Science Rationale. Planetary Science Journal, 2022, 3, 40.	1.5	7
57	Listening for the Landing: Seismic Detections of Perseverance's Arrival at Mars With InSight. Earth and Space Science, 2021, 8, e2020EA001585.	1.1	5
58	Impact seismology on terrestrial and giant planets. , 2015, , 250-263.		4
59	Questions to Heaven. Astronomy and Geophysics, 2021, 62, 6.22-6.25.	0.1	2
60	An autonomous lunar geophysical experiment package (ALGEP) for future space missions. Experimental Astronomy, 2022, 54, 617-640.	1.6	2
61	Measuring Fundamental and Higher Mode Surface Wave Dispersion on Mars From Seismic Waveforms. Earth and Space Science, 2021, 8, e2020EA001263.	1.1	Ο