
Kathy T Mullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11797733/publications.pdf Version: 2024-02-01

ΚΛΤΗΥ Τ ΜΗΠΕΝ

#	Article	IF	CITATIONS
1	Differential distributions of red–green and blue–yellow cone opponency across the visual field. Visual Neuroscience, 2002, 19, 109-118.	O.5	150
2	Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain, 2003, 127, 591-601.	3.7	126
3	Deficient responses from the lateral geniculate nucleus in humans with amblyopia. European Journal of Neuroscience, 2009, 29, 1064-1070.	1.2	126
4	Losses in Peripheral Colour Sensitivity Predicted from "Hit and Miss―Post-receptoral Cone Connections. Vision Research, 1996, 36, 1995-2000.	0.7	122
5	Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 2633.	0.8	113
6	Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation. European Journal of Neuroscience, 2007, 25, 491-502.	1.2	93
7	Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 906.	0.8	92
8	Contour integration with colour and luminance contrast. Vision Research, 1996, 36, 1265-1279.	0.7	83
9	A motion aftereffect from an isoluminant stimulus. Vision Research, 1985, 25, 685-688.	0.7	80
10	Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1995, 12, 250.	0.8	68
11	Absence of S-cone input in human blindsight following hemispherectomy. European Journal of Neuroscience, 2006, 24, 2954-2960.	1.2	66
12	Contour integration in color vision: a common process for the blue–yellow, red–green and luminance mechanisms?. Vision Research, 2000, 40, 639-655.	0.7	63
13	The Amblyopic Deficit and Its Relationship to Geniculo-Cortical Processing Streams. Journal of Neurophysiology, 2010, 104, 475-483.	0.9	56
14	Blindsight Mediated by an S-Cone-independent Collicular Pathway: An fMRI Study in Hemispherectomized Subjects. Journal of Cognitive Neuroscience, 2010, 22, 670-682.	1.1	56
15	Does L/M Cone Opponency Disappear in Human Periphery?. Perception, 2005, 34, 951-959.	O.5	55
16	Effective connectivity anomalies in human amblyopia. NeuroImage, 2011, 54, 505-516.	2.1	53
17	Comparison of color and luminance vision on a global shape discrimination task. Vision Research, 2002, 42, 565-575.	0.7	52
18	How long range is contour integration in human color vision?. Visual Neuroscience, 2003, 20, 51-64.	0.5	49

KATHY T MULLEN

#	Article	IF	CITATIONS
19	Color responses of the human lateral geniculate nucleus: selective amplification of S one signals between the lateral geniculate nucleno and primary visual cortex measured with highâ€field fMRI. European Journal of Neuroscience, 2008, 28, 1911-1923.	1.2	49
20	Dynamics of contour integration. Vision Research, 2001, 41, 1023-1037.	0.7	48
21	Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: An fMRI study. Journal of Vision, 2010, 10, 13-13.	0.1	48
22	Is the Acquisition of Basic-Colour Terms in Young Children Constrained?. Perception, 2002, 31, 1349-1370.	0.5	46
23	Conceptualization of Perceptual Attributes: A Special Case for Color?. Journal of Experimental Child Psychology, 2001, 80, 289-314.	0.7	44
24	Bipolar or rectified chromatic detection mechanisms?. Visual Neuroscience, 2001, 18, 127-135.	0.5	43
25	Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise. Vision Research, 2005, 45, 687-696.	0.7	43
26	Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation. Vision Research, 1999, 39, 733-745.	0.7	42
27	Absence of a chromatic linear motion mechanism in human vision. Vision Research, 2000, 40, 1993-2010.	0.7	38
28	Luminance mechanisms mediate the motion of red–green isoluminant gratings: the role of "temporal chromatic aberration― Vision Research, 2003, 43, 1237-1249.	0.7	38
29	Absence of Linear Subthreshold summation between Red-Green and Luminance Mechanisms over a Wide Range of Spatio-temporal Conditions. Vision Research, 1997, 37, 1157-1165.	0.7	37
30	The spatial tuning of color and luminance peripheral vision measured with notch filtered noise masking. Vision Research, 1999, 39, 721-731.	0.7	37
31	The role of perception, language, and preference in the developmental acquisition of basic color terms. Journal of Experimental Child Psychology, 2005, 90, 275-302.	0.7	37
32	Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 1969.	0.8	36
33	Chromatic and achromatic monocular deprivation produce separable changes of eye dominance in adults. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171669.	1.2	31
34	A nonlinear chromatic motion mechanism. Vision Research, 1998, 38, 291-302.	0.7	30
35	Processing Time of Contour Integration: The Role of Colour, Contrast, and Curvature. Perception, 2001, 30, 833-853.	0.5	29
36	The selectivity of responses to redâ€green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study. European Journal of Neuroscience, 2015, 42, 2923-2933.	1.2	27

KATHY T MULLEN

#	Article	IF	CITATIONS
37	Evidence that global processing does not limit thresholds for RF shape discrimination. Journal of Vision, 2011, 11, 6-6.	0.1	23
38	Color and luminance vision in human amblyopia: Shifts in isoluminance, contrast sensitivity losses, and positional deficits. Vision Research, 1996, 36, 645-653.	0.7	22
39	Color responses and their adaptation in human superior colliculus and lateral geniculate nucleus. NeuroImage, 2016, 138, 211-220.	2.1	21
40	Cone weights for the two cone-opponent systems in peripheral vision and asymmetries of cone contrast sensitivity. Vision Research, 2006, 46, 4346-4354.	0.7	20
41	A Normative Data Set for the Clinical Assessment of Achromatic and Chromatic Contrast Sensitivity Using a <i>qCSF</i> Approach. , 2018, 58, 3628.		18
42	Collinear facilitation in color vision. Journal of Vision, 2007, 7, 6.	0.1	16
43	The Role of Human Brain Area hMT+ in the Perception of Global Motion Investigated With Repetitive Transcranial Magnetic Stimulation (rTMS). Brain Stimulation, 2015, 8, 200-207.	0.7	14
44	S-cone contributions to linear and non-linear motion processing. Vision Research, 2007, 47, 1042-1054.	0.7	13
45	Analysis of errors in color agnosia: A single-case study. Neurocase, 1999, 5, 95-108.	0.2	12
46	Evidence for chromatic edge detectors in human vision using classification images. Journal of Vision, 2018, 18, 8.	0.1	12
47	Color contrast adaptation: fMRI fails to predict behavioral adaptation. NeuroImage, 2019, 201, 116032.	2.1	12
48	The contribution of color to global motion processing. Journal of Vision, 2008, 8, 10.	0.1	10
49	Orientation tuning in human colour vision at detection threshold. Scientific Reports, 2014, 4, 4285.	1.6	10
50	The response to colour in the human visual cortex: the fMRI approach. Current Opinion in Behavioral Sciences, 2019, 30, 141-148.	2.0	10
51	Contrast normalization in colour vision: the effect of luminance contrast on colour contrast detection. Scientific Reports, 2014, 4, 7350.	1.6	8
52	Color in the Cortex. , 2016, , 189-217.		7
53	fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex. NeuroImage, 2020, 215, 116780.	2.1	7
54	Effect of overlaid luminance contrast on perceived color contrast: Shadows enhance, borders suppress. Journal of Vision, 2016, 16, 15.	0.1	6

KATHY T MULLEN

#	Article	IF	CITATIONS
55	Mutual rod–cone suppression within the central visual field. Ophthalmic and Physiological Optics, 1992, 12, 183-188.	1.0	5
56	Orientation tuning of binocular summation: a comparison of colour to achromatic contrast. Scientific Reports, 2016, 6, 25692.	1.6	5
57	Reevaluating hMT+ and hV4 functional specialization for motion and static contrast using fMRI-guided repetitive transcranial magnetic stimulation. Journal of Vision, 2019, 19, 11.	0.1	5
58	Shifting eye balance using monocularly directed attention in normal vision. Journal of Vision, 2021, 21, 4.	0.1	5
59	Role of Chromaticity, Contrast, and Local Orientation Cues in the Perception of Density. Perception, 2000, 29, 581-600.	0.5	4
60	Global motion processing in human color vision: A deficit for second-order stimuli. Journal of Vision, 2010, 10, 20-20.	0.1	3
61	The role of the foreshortening cue in the perception of 3D object slant. Vision Research, 2014, 94, 41-50.	0.7	3
62	The dynamics of cross-orientation masking at monocular and interocular sites. Vision Research, 2015, 116, 80-91.	0.7	3
63	Enhanced luminance sensitivity on color and luminance pedestals: Threshold measurements and a model of parvocellular luminance processing. Journal of Vision, 2020, 20, 12.	0.1	3
64	Linking perceived to physical contrast: Comparing results from discrimination and difference-scaling experiments. Journal of Vision, 2022, 22, 13.	0.1	3
65	Evidence for mild blue-yellow colour vision deficits immediately following fluorescein angiography. Ophthalmic and Physiological Optics, 2000, 20, 137-141.	1.0	1
66	The Whole is Other Than the Sum: Perceived Contrast Summation Within Color and Luminance Plaids. I-Perception, 2016, 7, 204166951667248.	0.8	1
67	Analysis of Errors in Color Agnosia: A Single-case Study. Neurocase, 1999, 5, 95-107.	0.2	1
68	fMRI responses to foveal versus peripheral chromatic and achromatic stimuli. Journal of Vision, 2019, 19, 69.	0.1	1
69	Attention selectively enhances stimulus information for surround over foveal stimulus representations in occipital cortex. Journal of Vision, 2021, 21, 20.	0.1	0