Åukasz ByczyÅ"ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1179543/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Green synthesis of niflumic acid complexes with some transition metal ions (Mn(II), Fe(III), Co(II), Ni(II),) Tj ETQq1 696, 178814.	1 0.78431 2.7	.4 rgBT /Ove 11
2	Hydrophobic polyurethane powder clear coatings with lower curing temperature: Study on the synthesis of new blocked polyisocyanates. Progress in Organic Coatings, 2021, 159, 106402.	3.9	9
3	Thermal study, temperature diffraction patterns and evolved gas analysis during pyrolysis and oxidative decomposition of novel ternary complexes of light lanthanides with mefenamic acid and 1,10-phenanthroline. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105293.	5.5	8
4	Epoxy coatings with increased hydrophobicity modified by isocyanurate containing siloxane. Materials Today Communications, 2020, 24, 101001.	1.9	6
5	Hybrid nanobiocomposites based on poly(3-hydroxybutyrate) - characterization, thermal and mechanical properties. Acta of Bioengineering and Biomechanics, 2020, 22, 97-110.	0.4	0
6	Conductive polyurethane-based powder clear coatings modified with carbon nanotubes. Progress in Organic Coatings, 2019, 137, 105367.	3.9	9
7	Thermoanalytical studies (TG–DTG–DSC, Py–GC/MS) of sodium carboxymethyl starch with different degrees of substitution. Journal of Thermal Analysis and Calorimetry, 2019, 138, 4417-4425.	3.6	11
8	Linear polyurethanes with imidazoquinazoline rings: preparation and properties evaluation. Polymer Bulletin, 2019, 76, 6343-6370.	3.3	3
9	Comparison of spectral and thermal properties and antibacterial activity of new binary and ternary complexes of Sm(III), Eu(III) and Gd(III) ions with N-phenylanthranilic acid and 1,10-phenanthroline. Thermochimica Acta, 2019, 671, 134-148.	2.7	24
10	Preparation, spectral properties and thermal decomposition of new ternary complexes of La(III), Ce(III), Pr(III) and Nd(III) ions with N-phenylanthranilic acid and 1,10-phenanthroline. Thermochimica Acta, 2018, 659, 242-252.	2.7	22
11	Spectroscopic study, thermal investigation and evolved gas analysis (EGA) during pyrolysis and oxidative decomposition of new binuclear complexes of La(III), Ce(III), Pr(III) and Nd(III) with N-phenylanthranilic acid. Journal of Analytical and Applied Pyrolysis, 2017, 123, 1-11.	5.5	15
12	Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Progress in Organic Coatings, 2017, 108, 51-58.	3.9	23
13	Study on the synthesis of new blocked polyisocyanates as crosslinking agents for hydrophobic polyurethane powder clear coatings. Progress in Organic Coatings, 2017, 113, 82-89.	3.9	16
14	The effect of epoxyurethane modification on surface and thermal properties of fluorinated epoxyfunctional siloxane high—solid coatings. Progress in Organic Coatings, 2017, 112, 118-126.	3.9	6
15	Methods of increasing hydrophobicity of polyurethane materials: important applications of coatings with low surface free energy. Colloid and Polymer Science, 2017, 295, 2309.	2.1	3
16	Synthesis, structural characterization and thermal studies of a novel reagent 1-[(5-benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2233-2242.	3.6	26
17	Poly(urethane-siloxane) Copolymers as New Coating Materials. , 2017, , 283-304.		0
18	Study on the thermal behavior of new blocked polyisocyanates for polyurethane powder coatings. Progress in Organic Coatings, 2016, 101, 240-244.	3.9	13

Åukasz ByczyÅ"ski

#	Article	IF	CITATIONS
19	Thermal analysis in foundry technology. Journal of Thermal Analysis and Calorimetry, 2016, 126, 245-250.	3.6	10
20	Thermal and surface properties of hybrid materials obtained from epoxy-functional urethane and siloxane. Polymer Bulletin, 2016, 73, 1247-1265.	3.3	7
21	Synthesis, spectral and thermal study of La(III), Nd(III), Sm(III), Eu(III), Gd(III) and Tb(III) complexes with mefenamic acid. Journal of Thermal Analysis and Calorimetry, 2016, 124, 363-374.	3.6	29
22	A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes. Journal of Thermal Analysis and Calorimetry, 2015, 122, 215-226.	3.6	19
23	Synthesis and properties of high-solids hybrid materials obtained from epoxy functional urethanes and siloxanes. Progress in Organic Coatings, 2015, 84, 59-69.	3.9	22
24	Peel adhesion of acrylic pressure-sensitive adhesives on selected substrates versus their surface energies. International Journal of Adhesion and Adhesives, 2014, 49, 38-43.	2.9	51
25	Thermal degradation studies of poly(urethane–siloxane) thermosets based on co-poly(dimethyl)(methyl, 3-glycidoxypropyl)siloxane and epoxy-terminated urethane oligomer. Thermochimica Acta, 2014, 592, 58-66.	2.7	18
26	Thermal degradation studies of poly(urethane–siloxane) thermosets based on co-poly(dimethyl)(methyl, hydroxypolyoxyethylenepropyl) siloxane. Thermochimica Acta, 2014, 589, 252-261.	2.7	16
27	Effect of different polyethers on surface and thermal properties of poly(urethane-siloxane) copolymers modified with side-chain siloxane. Journal of Thermal Analysis and Calorimetry, 2013, 114, 397-408.	3.6	20
28	How does the surface free energy influence the tack of acrylic pressure-sensitive adhesives (PSAs)?. Journal of Coatings Technology Research, 2013, 10, 879-885.	2.5	54
29	Thermal degradation kinetics of semi-interpenetrating polymer network based on polyurethane and siloxane. Thermochimica Acta, 2013, 560, 55-62.	2.7	21
30	Thermal degradation kinetics of polyurethane–siloxane anionomers. Thermochimica Acta, 2010, 507-508, 91-98.	2.7	16
31	Chemical structure, thermal properties, and freeâ€surface energy parameters of coatings synthesized from poly(urethaneâ€dimethylsiloxane) anionomers. Journal of Applied Polymer Science, 2008, 110, 3488-3500.	2.6	5