Yongchun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1179501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retention of trace elements in coal-fired flue gas by a novel heterogeneous agglomeration technology. Journal of Environmental Sciences, 2023, 125, 234-243.	6.1	7
2	Condensation and adsorption characteristics of gaseous selenium on coal-fired fly ash at low temperatures. Chemosphere, 2022, 287, 132127.	8.2	18
3	Photo- and thermo-catalytic mechanisms for elemental mercury removal by Ce doped commercial selective catalytic reduction catalyst (V2O5/TiO2). Chemosphere, 2022, 287, 132336.	8.2	15
4	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash: Part 6. Commercial scale demonstration at a 1000MWth coal-fired power plant. Fuel, 2022, 310, 122219.	6.4	21
5	Enhanced photocatalytic HgO oxidation activity of iodine doped bismuth molybdate (Bi2MoO6) under visible light. Journal of Colloid and Interface Science, 2022, 607, 1864-1875.	9.4	18
6	Demonstration and application of heterogeneous agglomeration technology in a 350ÂMW coal-fired power plant: Removal of particulate matter and trace elements. Fuel, 2022, 309, 122361.	6.4	4
7	Comparative study on fuel characteristics and pyrolysis kinetics of corn residue-based hydrochar produced via microwave hydrothermal carbonization. Chemosphere, 2022, 291, 132787.	8.2	19
8	A review on removal of mercury from flue gas utilizing existing air pollutant control devices (APCDs). Journal of Hazardous Materials, 2022, 427, 128132.	12.4	58
9	Surface sulfidation modification of magnetospheres from fly ash for elemental mercury removal from coal combustion flue gas. Chemical Engineering Journal, 2022, 436, 135212.	12.7	41
10	PtCu alloy cocatalysts for efficient photocatalytic CO ₂ reduction into CH ₄ with 100% selectivity. Catalysis Science and Technology, 2022, 12, 3454-3463.	4.1	13
11	Fate and emission behavior of heavy metals during hazardous chemical waste incineration. Journal of Hazardous Materials, 2022, 431, 128656.	12.4	18
12	Influence of SO3 on the MnOx/TiO2 SCR catalyst for elemental mercury removal and the function of Fe modification. Journal of Hazardous Materials, 2022, 433, 128737.	12.4	7
13	Elemental mercury removal by Iâ^'-doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation. Applied Catalysis B: Environmental, 2021, 282, 119534.	20.2	107
14	Natural ferruginous manganese ore for efficient immobilization of elemental mercury from coal combustion flue gas. Fuel, 2021, 283, 118946.	6.4	45
15	Elemental mercury removal from simulated coal-fired flue gas by modified tonstein in coal seam. Fuel, 2021, 284, 119016.	6.4	9
16	Ash formation and trace elements associations with fine particles in an ultra-low emission coal-fired power plant. Fuel, 2021, 288, 119718.	6.4	17
17	Elemental mercury removal from flue gas using modified tonstein: Performance of adsorbent injection at an entrained flow reactor system and 50-MW coal-fired power plant in China. Journal of Cleaner Production, 2021, 287, 124998.	9.3	10
18	Mercury species and potential leaching in sludge from coal-fired power plants. Journal of Hazardous Materials, 2021, 403, 123927.	12.4	30

#	Article	IF	CITATIONS
19	Reversed selectivity of photocatalytic CO ₂ reduction over metallic Pt and Pt(<scp>ii</scp>) oxide cocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 9407-9417.	2.8	8
20	Mercury Removal from Flue Gas by Noncarbon Sorbents. Energy & amp; Fuels, 2021, 35, 3581-3610.	5.1	60
21	The role of SO2 in arsenic removal by carbon-based sorbents: A DFT study. Chemical Engineering Journal, 2021, 410, 128439.	12.7	29
22	A review on arsenic removal from coal combustion: Advances, challenges and opportunities. Chemical Engineering Journal, 2021, 414, 128785.	12.7	68
23	Behavior of mercury in chemical looping with oxygen uncoupling of coal. Fuel Processing Technology, 2021, 216, 106747.	7.2	13
24	Insights into the mechanism of lead species adsorption over Al2O3 sorbent. Journal of Hazardous Materials, 2021, 413, 125371.	12.4	25
25	Mercury removal performance over a Ce-doped V-W/TiO2 catalyst in an internally illuminated honeycomb photoreactor. Science China Technological Sciences, 2021, 64, 2441.	4.0	3
26	Experimental study and kinetics on CO2 mineral sequestration by the direct aqueous carbonation of pepper stalk ash. Fuel, 2021, 303, 121230.	6.4	18
27	Fabrication of Z-scheme VO-Bi2WO6/g-C3N4 heterojunction composite with visible-light-driven photocatalytic performance for elemental mercury removal. Chemical Engineering Journal, 2021, 425, 131537.	12.7	28
28	2D/2D Heterostructure of Metal-Free Ultrathin Graphdiyne/Carbon Nitride Nanosheets for Enhanced Photocatalytic Reduction of Carbon Dioxide with Water. ACS Applied Energy Materials, 2021, 4, 12403-12410.	5.1	12
29	Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chemical Engineering Journal, 2020, 379, 122263.	12.7	86
30	Investigation on mercury removal and recovery based on enhanced adsorption by activated coke. Journal of Hazardous Materials, 2020, 384, 121354.	12.4	34
31	Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water. Applied Surface Science, 2020, 507, 145095.	6.1	29
32	Effects of temperature, atmosphere, silicon occurrences on fine particle formation from vaporization during high-silicon coal combustion. Fuel, 2020, 280, 118649.	6.4	12
33	Study on the Interaction of the Fe-Based Oxygen Carrier with Ashes. Energy & Fuels, 2020, 34, 9796-9809.	5.1	8
34	Photocatalytic CO2 reduction over postcalcinated atomically thin TiO2 nanosheets: Residual carbon removal and structure transformation. Journal of CO2 Utilization, 2020, 41, 101262.	6.8	8
35	Performance of CuCl ₂ -Modified Activated Carbon on Mercury Capture after Injection in an Entrained Flow Reactor. Industrial & amp; Engineering Chemistry Research, 2020, 59, 5557-5565.	3.7	13
36	Enhancement of CeO ₂ modified commercial SCR catalyst for synergistic mercury removal from coal combustion flue gas. RSC Advances, 2020, 10, 25325-25338.	3.6	18

#	Article	IF	CITATIONS
37	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash: Part 5. Industrial scale studies at a 50ÂMWth coal-fired power plant. Fuel, 2020, 266, 117052.	6.4	30
38	Photocatalytic removal of elemental mercury via Ce-doped TiO2 catalyst coupling with a novel optical fiber monolith reactor. Environmental Science and Pollution Research, 2020, 27, 21281-21291.	5.3	6
39	Geochemistry effects of supercritical CO2 and H2O on the mesopore and macropore structures of high-rank coal from the Qinshui Basin, China. International Journal of Coal Geology, 2020, 223, 103467.	5.0	37
40	DFT study on HgO adsorption over graphene oxide decorated by transition metals (Zn, Cu and Ni). Applied Surface Science, 2020, 525, 146519.	6.1	23
41	Migration and identification of mercury species in wet flue gas desulfurization system using temperature programmed decomposition. Journal of Cleaner Production, 2020, 276, 124211.	9.3	12
42	Trace elements in coals. , 2019, , 21-62.		2
43	Trace element emissions from coal-fired power plants. , 2019, , 227-285.		2
44	Sorbents for trace elements in coal-derived flue gas. , 2019, , 287-373.		2
45	Trace element resource recovery from coal and coal utilization by-products. , 2019, , 375-399.		0
46	Adsorption and Oxidation of Mercury by Montmorillonite Powder Modified with Different Copper Compounds. Energy & Fuels, 2019, 33, 7852-7860.	5.1	16
47	Efficient Hydrogen Production from Coke Oven Gas by Sorption-Enhanced Steam Reforming in a Membrane-Assisted Fluidized Bed Reactor. Energy & Fuels, 2019, 33, 11420-11438.	5.1	14
48	Role of SO3 in Elemental Mercury Removal by Magnetic Biochar. Energy & Fuels, 2019, 33, 11446-11453.	5.1	17
49	Fate of Mercury in Volatiles and Char during in Situ Gasification Chemical-Looping Combustion of Coal. Environmental Science & amp; Technology, 2019, 53, 7887-7892.	10.0	37
50	Experimental study of supercritical CO2-H2O-coal interactions and the effect on coal permeability. Fuel, 2019, 253, 369-382.	6.4	48
51	Mercury adsorption and oxidation over magnetic biochar in oxyfuel combustion atmosphere: Impact of enriched CO2 and H2O. Fuel, 2019, 251, 458-465.	6.4	26
52	Research on the Mechanism of Elemental Mercury Removal over Mn-Based SCR Catalysts by a Developed Hg-TPD Method. Energy & Fuels, 2019, 33, 2467-2476.	5.1	27
53	Removal of gaseous elemental mercury by modified diatomite. Science of the Total Environment, 2019, 652, 651-659.	8.0	50
54	Role of flue gas components in Hg0 oxidation over La0.8Ce0.2MnO3 perovskite catalyst in coal combustion flue gas. Chemical Engineering Journal, 2019, 360, 1656-1666.	12.7	56

#	Article	IF	CITATIONS
55	Behavior and fate of As, Se, and Cd in an ultra-low emission coal-fired power plant. Journal of Cleaner Production, 2019, 209, 722-730.	9.3	65
56	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 4. Performance of sorbent injection in an entrained flow reactor system. Fuel, 2018, 220, 403-411.	6.4	70
57	Photocatalytic reduction of CO2 over facet engineered TiO2 nanocrystals supported by carbon nanofibers under simulated sunlight irradiation. Catalysis Communications, 2018, 108, 27-32.	3.3	16
58	Relationship between the zeta potential and the chemical agglomeration efficiency of fine particles in flue gas during coal combustion. Fuel, 2018, 215, 756-765.	6.4	33
59	Enhanced CO2 photocatalytic reduction through simultaneously accelerated H2 evolution and CO2 hydrogenation in a twin photoreactor. Journal of CO2 Utilization, 2018, 24, 500-508.	6.8	24
60	Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3â^'xMnxO4/CNF) for efficient removal of HgO from coal combustion flue gas. Chemical Engineering Journal, 2018, 334, 216-224.	12.7	135
61	Emission controls of mercury and other trace elements during coal combustion in China: a review. International Geology Review, 2018, 60, 638-670.	2.1	47
62	Elemental Mercury Removal from Flue Gas over TiO ₂ Catalyst in an Internal-Illuminated Honeycomb Photoreactor. Industrial & Engineering Chemistry Research, 2018, 57, 17348-17355.	3.7	23
63	Synergistic Mercury Removal over the CeMnO ₃ Perovskite Structure Oxide as a Selective Catalytic Reduction Catalyst from Coal Combustion Flue Gas. Energy & Fuels, 2018, 32, 11785-11795.	5.1	42
64	Mineral matter and trace elements in ashes from a high-arsenic lignite fired power plant in Inner Mongolia, China. International Journal of Coal Geology, 2018, 196, 317-334.	5.0	16
65	Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas. Chemical Engineering Journal, 2018, 348, 618-629.	12.7	131
66	Mercury Behavior and Retention in Oxy-fuel Combustion. , 2018, , 151-170.		3
67	A review on modification of facet-engineered TiO2 for photocatalytic CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 36, 24-47.	11.6	141
68	Simultaneous NO Reduction and Hg ⁰ Oxidation over La _{0.8} Ce _{0.2} MnO ₃ Perovskite Catalysts at Low Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 9374-9385.	3.7	37
69	Integrated removal of NO and mercury from coal combustion flue gas using manganese oxides supported on TiO 2. Journal of Environmental Sciences, 2017, 53, 141-150.	6.1	49
70	Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Processing Technology, 2017, 158, 272-280.	7.2	97
71	Flame spray pyrolysis synthesized ZnO/CeO 2 nanocomposites for enhanced CO 2 photocatalytic reduction under UV–Vis light irradiation. Journal of CO2 Utilization, 2017, 18, 53-61.	6.8	89
72	Mercury emission and speciation in fly ash from a 35 MW th large pilot boiler of oxyfuel combustion with different flue gas recycle. Fuel, 2017, 195, 174-181.	6.4	33

#	Article	IF	CITATIONS
73	Experimental and theoretical studies of mercury oxidation over CeO 2 â^' WO 3 /TiO 2 catalysts in coal-fired flue gas. Chemical Engineering Journal, 2017, 317, 758-765.	12.7	82
74	Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation. Fuel, 2017, 203, 557-569.	6.4	47
75	Effect of sulfite on divalent mercury reduction and re-emission in a simulated desulfurization aqueous solution. Fuel Processing Technology, 2017, 165, 138-144.	7.2	27
76	Simultaneous NO and mercury removal over MnO x /TiO 2 catalyst in different atmospheres. Fuel Processing Technology, 2017, 166, 282-290.	7.2	64
77	Multi-fluid reactive modeling of sorption enhanced steam reforming of coke oven gas in fluidized bed. Fuel, 2017, 204, 152-170.	6.4	16
78	Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash. Waste Management, 2017, 67, 171-180.	7.4	61
79	Mercury removal from coal combustion flue gas by modified palygorskite adsorbents. Applied Clay Science, 2017, 147, 36-43.	5.2	33
80	Comprehensive Evaluation of Mercury Photocatalytic Oxidation by Cerium-Based TiO ₂ Nanofibers. Industrial & Engineering Chemistry Research, 2017, 56, 3804-3812.	3.7	20
81	CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: Effect of deposition method and Pt precursors. Catalysis Communications, 2017, 96, 1-5.	3.3	55
82	Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas. Chemosphere, 2017, 185, 690-698.	8.2	29
83	Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Applied Catalysis B: Environmental, 2017, 219, 412-424.	20.2	71
84	Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF. Fuel Processing Technology, 2017, 167, 263-270.	7.2	57
85	Photochemical Removal of SO ₂ over TiO ₂ -Based Nanofibers by a Dry Photocatalytic Oxidation Process. Energy & Fuels, 2017, 31, 9905-9914.	5.1	24
86	A mode transition strategy from air to oxyfuel combustion in a 35 MW coal-fired power plant boiler. Korean Journal of Chemical Engineering, 2017, 34, 1554-1562.	2.7	10
87	Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators. Environmental Technology (United Kingdom), 2017, 38, 2105-2118.	2.2	18
88	Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable and Sustainable Energy Reviews, 2017, 67, 791-810.	16.4	113
89	A novel reaction mode using H2 produced from solid-liquid reaction to promote CO2 reduction through solid-gas reaction. Catalysis Communications, 2017, 89, 4-8.	3.3	12
90	Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 2017, 202, 695-703.	20.2	216

#	Article	IF	CITATIONS
91	Removal of elemental mercury from flue gas by recyclable CuCl 2 modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere. Fuel, 2016, 173, 1-7.	6.4	48
92	Mineral changes and trace element releases during extraction of alumina from high aluminum fly ash in Inner Mongolia, China. International Journal of Coal Geology, 2016, 166, 96-107.	5.0	40
93	Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust. Environmental Science & Technology, 2016, 50, 12040-12047.	10.0	327
94	Release and the interaction mechanism of uranium and alkaline/alkaline-earth metals during coal combustion. Fuel, 2016, 186, 405-413.	6.4	21
95	High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. International Journal of Hydrogen Energy, 2016, 41, 13077-13085.	7.1	69
96	Release Behaviors of Arsenic in Fine Particles Generated from a Typical High-Arsenic Coal at a High Temperature. Energy & Fuels, 2016, 30, 6201-6209.	5.1	55
97	Direct resolution of differential pressure fluctuations to characterize multi-scale dynamics in a gas fluidized bed. International Journal of Multiphase Flow, 2016, 85, 380-394.	3.4	14
98	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism. Fuel, 2016, 167, 366-374.	6.4	66
99	Synthesis, characterization and enhanced photocatalytic CO ₂ reduction activity of graphene supported TiO ₂ nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 2016, 18, 13186-13195.	2.8	84
100	Understanding of physicochemical properties and formation mechanisms of fine particular matter generated from Canadian coal combustion. Fuel, 2016, 165, 224-234.	6.4	29
101	Removal of elemental mercury from flue gas by recyclable CuCl 2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel, 2016, 164, 419-428.	6.4	110
102	Arsenic Emissions and Speciations in High-temperature Treatment of a Typical High Arsenic Coal. , 2016, , 229-234.		1
103	CO ₂ Sequestration by Direct Aqueous Mineral Carbonation under Low-Medium Pressure Conditions. Journal of Chemical Engineering of Japan, 2015, 48, 937-946.	0.6	24
104	Fundamental and Technical Challenges for a Compatible Design Scheme of Oxyfuel Combustion Technology. Engineering, 2015, 1, 139-149.	6.7	48
105	Characterization of pressure fluctuations from a gas–solid fluidized bed by structure density function analysis. Chemical Engineering Science, 2015, 129, 156-167.	3.8	24
106	Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas. Environmental Science & Technology, 2015, 49, 8210-8218.	10.0	88
107	Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. International Journal of Hydrogen Energy, 2015, 40, 10049-10062.	7.1	97
108	Chemistry, mineralogical, and residence of arsenic in a typical high arsenic coal. International Journal of Mineral Processing, 2015, 141, 61-67.	2.6	15

#	Article	IF	CITATIONS
109	Efficient photocatalytic reduction of CO2 into liquid products over cerium doped titania nanoparticles synthesized by a sol–gel auto-ignited method. Fuel Processing Technology, 2015, 135, 6-13.	7.2	58
110	Modes of Occurrence of Fluorine by Extraction and SEM Method in a Coal-Fired Power Plant from Inner Mongolia, China. Minerals (Basel, Switzerland), 2015, 5, 863-869.	2.0	18
111	Regenerable Cobalt Oxide Loaded Magnetosphere Catalyst from Fly Ash for Mercury Removal in Coal Combustion Flue Gas. Environmental Science & Technology, 2014, 48, 14837-14843.	10.0	141
112	Hydrogen Production in a Sorption-Enhanced Fluidized-Bed Membrane Reactor: Operating Parameter Investigation. Industrial & Engineering Chemistry Research, 2014, 53, 6230-6242.	3.7	27
113	Physical–chemical characteristics and elements enrichment of magnetospheres from coal fly ashes. Fuel, 2014, 135, 15-26.	6.4	71
114	Understanding of mineralogy and residence of trace elements in coals via a novel method combining low temperature ashing and float-sink technique. International Journal of Coal Geology, 2014, 131, 162-171.	5.0	35
115	CO2 Sequestration from flue gas by direct aqueous mineral carbonation of wollastonite. Science China Technological Sciences, 2013, 56, 2219-2227.	4.0	22
116	Kinetic modeling of mercury oxidation by chlorine over CeO2–TiO2 catalysts. Fuel, 2013, 113, 726-732.	6.4	28
117	Release and removal using sorbents of chromium from a high-Cr lignite in Shenbei coalfield, China. Fuel, 2013, 109, 86-93.	6.4	31
118	Numerical study of hydrogen production via sorption-enhanced steam methane reforming in a fluidized bed reactor at relatively low temperature. Chemical Engineering Science, 2013, 92, 67-80.	3.8	24
119	Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst. Chemical Engineering Journal, 2013, 219, 319-326.	12.7	125
120	Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature. Journal of Hazardous Materials, 2012, 243, 117-123.	12.4	174
121	Electrospun metal oxide–TiO2 nanofibers for elemental mercury removal from flue gas. Journal of Hazardous Materials, 2012, 227-228, 427-435.	12.4	62
122	Removal of Gas-Phase Elemental Mercury in Flue Gas by Inorganic Chemically Promoted Natural Mineral Sorbents. Industrial & Engineering Chemistry Research, 2012, 51, 3039-3047.	3.7	63
123	Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis. Chemical Engineering Journal, 2012, 192, 21-28.	12.7	113
124	Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal. International Journal of Coal Geology, 2012, 94, 182-190.	5.0	41
125	Relationship between nitrogenous species in coals and volatile nitrogenâ€containing yields during pyrolysis. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 124-130.	1.5	8
126	Wettability of Fly Ashes from Four Coal-Fired Power Plants in China. Industrial & Engineering Chemistry Research, 2011, 50, 7763-7771.	3.7	19

Yongchun Zhao

#	Article	IF	CITATIONS
127	Volatility and Speciation of Mercury during Pyrolysis and Gasification of Five Chinese Coals. Energy & Fuels, 2011, 25, 3988-3996.	5.1	42
128	Exergy life cycle assessment model of "CO2 zero-emission―energy system and application. Science China Technological Sciences, 2011, 54, 3296-3303.	4.0	12
129	Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents. Science China Technological Sciences, 2011, 54, 2999-3008.	4.0	20
130	A new method for ash melthod thermo-analysis based on mineral quantity. Science Bulletin, 2011, 56, 1043-1047.	1.7	7
131	Experimental study on fly ash capture mercury in flue gas. Science China Technological Sciences, 2010, 53, 976-983.	4.0	48
132	Technical-economic evaluation of O2/CO2 recycle combustion power plant based on life-cycle. Science China Technological Sciences, 2010, 53, 3284-3293.	4.0	18
133	Study on mechanism of mercury oxidation by fly ash from coal combustion. Science Bulletin, 2010, 55, 163-167.	1.7	40
134	Mineralogy and microstructure of ash deposits from the Zhuzhou coal-fired power plant in China. International Journal of Coal Geology, 2010, 81, 309-319.	5.0	32
135	Mineralogy and Chemical Composition of High-Calcium Fly Ashes and Density Fractions from a Coal-Fired Power Plant in China. Energy & Fuels, 2010, 24, 834-843.	5.1	54
136	Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal of Coal Geology, 2008, 73, 52-62.	5.0	138
137	Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China. Energy Conversion and Management, 2008, 49, 615-624.	9.2	91
138	Preliminary study of trace element emissions and control during coal combustion. Frontiers of Energy and Power Engineering in China, 2007, 1, 273-279.	0.4	17
139	Mineralogy, Chemical Composition, and Microstructure of Ferrospheres in Fly Ashes from Coal Combustion. Energy & Fuels, 2006, 20, 1490-1497.	5.1	80