## Michael J Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11794026/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                  | IF               | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 1  | High-precision orientation mapping from spherical harmonic transform indexing of electron backscatter diffraction patterns. Ultramicroscopy, 2021, 222, 113187.                                                                                                                                                          | 1.9              | 5                   |
| 2  | Experimental Calibration & Multi-scale Simulation of Multi-modal γ′ Precipitation in Nickel Superalloys<br>During Continuous Cooling. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2021, 52, 3122.                                                                          | 2.2              | 2                   |
| 3  | In-Situ γ-γ′ Lattice Parameter Evolution and Tertiary Burst Phenomena During Controlled Cooling of<br>Commercial PM Nickel-Base Superalloys. Metallurgical and Materials Transactions A: Physical<br>Metallurgy and Materials Science, 2021, 52, 2973.                                                                   | 2.2              | 4                   |
| 4  | Shearing mechanisms of co-precipitates in IN718. Acta Materialia, 2021, 220, 117305.                                                                                                                                                                                                                                     | 7.9              | 13                  |
| 5  | Utilizing local phase transformation strengthening for nickel-base superalloys. Communications<br>Materials, 2021, 2, .                                                                                                                                                                                                  | 6.9              | 19                  |
| 6  | Creep Behavior of Compact γ′-γ″ Coprecipitation Strengthened IN718-Variant Superalloy. Metals, 2021, 11<br>1897.                                                                                                                                                                                                         | ' 2.3            | 3                   |
| 7  | Generalized stacking fault energy surface mismatch and dislocation transformation. Npj<br>Computational Materials, 2021, 7, .                                                                                                                                                                                            | 8.7              | 6                   |
| 8  | Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Additive Manufacturing, 2020, 31, 100977.                                                                                                                        | 3.0              | 57                  |
| 9  | Laser Powder Bed Fusion of NiTiHf High-Temperature Shape Memory Alloy: Effect of Process<br>Parameters on the Thermomechanical Behavior. Metals, 2020, 10, 1522.                                                                                                                                                         | 2.3              | 10                  |
| 10 | On the Temperature Limits of Ni-Based Superalloys. Minerals, Metals and Materials Series, 2020, ,<br>785-792.                                                                                                                                                                                                            | 0.4              | 2                   |
| 11 | Three-Dimensional in situ Reconstructions of Microstructures with Bimodal Grain Size Distributions.<br>Microscopy and Microanalysis, 2019, 25, 370-371.                                                                                                                                                                  | 0.4              | 0                   |
| 12 | Structure, Morphology and Coarsening Behavior of MX (NbC) Nanoprecipitates in Fe-Ni-Cr Based<br>Alloys. Microscopy and Microanalysis, 2019, 25, 2612-2613.                                                                                                                                                               | 0.4              | 0                   |
| 13 | Oxidation-Related Microstructural Changes at a Crack Tip in Waspaloy After Elevated-Temperature<br>Dwell-Fatigue Testing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2019, 50, 5574-5580.                                                                                 | 2.2              | 3                   |
| 14 | Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Scientific Reports, 2019, 9, 41.                                                                                                                                                                           | 3.3              | 110                 |
| 15 | Growth behavior of <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"&gt;<mml:mrow><mml:mi>î³</mml:mi><mml:mo>'</mml:mo><mml:mo>/</mml:mo>/<mml:mi>î³&lt;<br/>coprecipitates in Ni-Base superalloys. Acta Materialia, 2019, 164, 220-236.</mml:mi></mml:mrow></mml:math> | /m/mal:mi>       | <rāml:mo></rāml:mo> |
| 16 | Magnetically-driven phase transformation strengthening in high entropy alloys. Nature<br>Communications, 2018, 9, 1363.                                                                                                                                                                                                  | 12.8             | 263                 |
| 17 | Enabling Large Superalloy Parts Using Compact Coprecipitation of $\hat{1}^3 \hat{\epsilon}^2$ and $\hat{1}^3 \hat{\epsilon}^2 \hat{\epsilon}^2$ . Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 708-717.                                                              | <sup>5</sup> 2.2 | 53                  |
| 18 | Structureâ€Property Relationships of a High Strength Superelastic NiTi–1Hf Alloy. Advanced<br>Engineering Materials, 2018, 20, 1800046.                                                                                                                                                                                  | 3.5              | 23                  |

MICHAEL J MILLS

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Effect of mixed partial occupation of metal sites on the phase stability of γ-Cr23â^'xFe x C6 (x = 0–3) carbides. Scientific Reports, 2018, 8, 7279.                                                                                    | 3.3  | 14        |
| 20 | Study of Structure and Deformation Pathways in Ti-7Al Using Atomistic Simulations, Experiments, and<br>Characterization. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2017, 48, 2222-2236. | 2.2  | 19        |
| 21 | On the origin of extraordinary cyclic strengthening of the austenitic stainless steel Sanicro 25<br>during fatigue at 700 °C. Journal of Materials Research, 2017, 32, 4342-4353.                                                       | 2.6  | 18        |
| 22 | Novel Characterization of Deformation Mechanisms in a Ni-base Superalloy Using HAADF Imaging and Atomic Ordering Analysis. Microscopy and Microanalysis, 2016, 22, 272-273.                                                             | 0.4  | 2         |
| 23 | Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects. Science<br>Advances, 2016, 2, e1601796.                                                                                                     | 10.3 | 56        |
| 24 | Creep deformation mechanism mapping in nickel base disk superalloys. Materials at High Temperatures, 2016, 33, 372-383.                                                                                                                 | 1.0  | 74        |
| 25 | Super-X EDS Characterization of Chemical Segregation within a Superlattice Extrinsic Stacking Fault of a Ni- based Superalloy. Microscopy and Microanalysis, 2015, 21, 493-494.                                                         | 0.4  | 4         |
| 26 | Considerations for Physical Facility Design and Management of a State-of-the-Art Electron<br>Microscopy and Analysis Laboratory. Microscopy and Microanalysis, 2015, 21, 525-526.                                                       | 0.4  | 0         |
| 27 | High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Materialia, 2015, 89, 423-437.                                                                                     | 7.9  | 127       |
| 28 | Sub-nanometer Resolution Chemi-STEM EDS Mapping of Superlattice Intrinsic Stacking Faults in Co-based Superalloys. Microscopy and Microanalysis, 2014, 20, 1028-1029.                                                                   | 0.4  | 6         |
| 29 | Molecular Beam Epitaxy of Graded-Composition InGaN Nanowires. Journal of Electronic Materials, 2013, 42, 863-867.                                                                                                                       | 2.2  | 13        |
| 30 | Spectrum-optimized Si-based III-V multijunction photovoltaics. Proceedings of SPIE, 2012, , .                                                                                                                                           | 0.8  | 15        |
| 31 | Growth and characterization of InGaAs quantum dots on metamorphic GaAsP templates by molecular beam epitaxy. , 2012, , .                                                                                                                |      | 1         |
| 32 | High-resolution characterization of the precipitation behavior of an Al–Zn–Mg–Cu alloy.<br>Philosophical Magazine Letters, 2012, 92, 166-178.                                                                                           | 1.2  | 59        |
| 33 | Polarization-Induced pn Diodes in Wide-Band-Gap Nanowires with Ultraviolet Electroluminescence.<br>Nano Letters, 2012, 12, 915-920.                                                                                                     | 9.1  | 106       |
| 34 | Three-Dimensional GaN/AlN Nanowire Heterostructures by Separating Nucleation and Growth Processes. Nano Letters, 2011, 11, 866-871.                                                                                                     | 9.1  | 97        |
| 35 | Modeling displacive–diffusional coupled dislocation shearing of γ′ precipitates in Ni-base superalloys.<br>Acta Materialia, 2011, 59, 3484-3497.                                                                                        | 7.9  | 57        |
| 36 | Expanding the palette: Metamorphic strategies over multiple lattice constant ranges for extending the spectrum of accessible photovoltaic materials. , 2011, , .                                                                        |      | 10        |

MICHAEL J MILLS

| #  | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Microstructural Features Leading to Enhanced Resistance to Grain Boundary Creep Cracking in ALLVAC 718Plus. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 409-420.                                                                                          | 2.2 | 25        |
| 38 | Characterization of Metamorphic GaAsP/Si Materials and Devices for Photovoltaic Applications. IEEE Transactions on Electron Devices, 2010, 57, 3361-3369.                                                                                                                                                      | 3.0 | 99        |
| 39 | Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metallurgical and<br>Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1371-1388.                                                                                                                | 2.2 | 141       |
| 40 | Microstructures of LENSâ,,¢ Deposited Nb-Si Alloys. Materials Research Society Symposia Proceedings, 2004, 842, 108.                                                                                                                                                                                           | 0.1 | 0         |
| 41 | Static recovery in titanium alloys at lower temperatures. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 570-575.                                                                                                                       | 5.6 | 13        |
| 42 | Microstructural effects on the tensile properties and deformation behavior of a Ti-48Al gamma<br>titanium aluminide. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials<br>Science, 2003, 34, 2113-2127.                                                                            | 2.2 | 10        |
| 43 | Deformation and creep modeling in polycrystalline Ti–6Al alloys. Acta Materialia, 2003, 51, 4533-4549.                                                                                                                                                                                                         | 7.9 | 280       |
| 44 | Application of a Modified Jogged-Screw Model for Creep of Titanium Aluminides: Evaluation Of The Key<br>Substructural Parameters. Materials Research Society Symposia Proceedings, 2003, 778, 861/W7.6.1.                                                                                                      | 0.1 | 0         |
| 45 | Application of a Modified Jogged-Screw Model for Creep of Titanium Aluminides: Evaluation Of The Key<br>Substructural Parameters. Materials Research Society Symposia Proceedings, 2003, 779, 761.                                                                                                             | 0.1 | 0         |
| 46 | Microstructural Evaluation of LENSâ,,¢ Deposited Nb-Ti-Si-Cr Alloys. Materials Research Society<br>Symposia Proceedings, 2002, 753, 1.                                                                                                                                                                         | 0.1 | 1         |
| 47 | A Revised Jogged-Screw Model For Creep Of Equiaxed γ-TiAl: Identification Of The Key Substructural<br>Parameters Materials Research Society Symposia Proceedings, 2002, 753, 1.                                                                                                                                | 0.1 | 0         |
| 48 | Modeling Dislocation Dissociation and Cutting of γ′ Precipitates in Ni-Based Superalloys by the Phase<br>Field Method. Materials Research Society Symposia Proceedings, 2002, 753, 1.                                                                                                                          | 0.1 | 3         |
| 49 | Anataseâ€ŧoâ€Rutile Transformation in Titania Powders. Journal of the American Ceramic Society, 2001, 84,<br>619-622.                                                                                                                                                                                          | 3.8 | 262       |
| 50 | Fabrication of Freeâ€Standing Titaniaâ€Based Gas Sensors by the Oxidation of Metallic Titanium Foils.<br>Journal of the American Ceramic Society, 2000, 83, 1007-1009.                                                                                                                                         | 3.8 | 48        |
| 51 | On the Role of Lamellar Interfaces on the Strength and Ductility of Two-Phase Titanium-Aluminum.<br>Materials Research Society Symposia Proceedings, 1998, 552, 1.                                                                                                                                             | 0.1 | 0         |
| 52 | Investigations of the misfit dislocation structure at a CdTe(001)/ga As(001) interface using<br>Stillinger-Weber potentials and high-resolution transmission electron microscopy. Philosophical<br>Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1995, 72,<br>635-649 | 0.6 | 12        |
| 53 | High-resolution transmission electron microscopy studies of dislocation cores in metals and intermetallic compounds. Ultramicroscopy, 1994, 56, 79-93.                                                                                                                                                         | 1.9 | 38        |
| 54 | A study of the structure of Lomer and 60° dislocations in aluminium using high-resolution transmission electron microscopy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1989, 60, 355-384.                                                            | 0.6 | 112       |