Thomas Schmalz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11793409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes. Journal of NeuroEngineering and Rehabilitation, 2022, 19, 9.	4.6	10
2	A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting. IISE Transactions on Occupational Ergonomics and Human Factors, 2022, 10, 7-20.	0.8	18
3	Continuous Prediction of Joint Angular Positions and Moments: A Potential Control Strategy for Active Knee-Ankle Prostheses. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 347-355.	3.2	6
4	Characterizing adaptations of prosthetic feet in the frontal plane. Prosthetics and Orthotics International, 2020, 44, 225-233.	1.0	10
5	A Support Vector Regression Approach for Continuous Prediction of Ankle Angle and Moment During Walking: An Implication for Developing a Control Strategy for Active Ankle Prostheses. , 2019, 2019, 727-733.		16
6	Biomechanical and Metabolic Effectiveness of an Industrial Exoskeleton for Overhead Work. International Journal of Environmental Research and Public Health, 2019, 16, 4792.	2.6	83
7	Comparative biomechanical evaluation of two technologically different microprocessor-controlled prosthetic knee joints in safety-relevant daily-life situations. Biomedizinische Technik, 2019, 64, 407-420.	0.8	18
8	Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts. Gait and Posture, 2019, 68, 161-167.	1.4	16
9	Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study. Disability and Rehabilitation: Assistive Technology, 2018, 13, 157-165.	2.2	12
10	Standing on slopes – how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 117.	4.6	26
11	A functional comparison of conventional knee–ankle–foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Prosthetics and Orthotics International, 2016, 40, 277-286.	1.0	24
12	Effects of Adaptation to a Functionally New Prosthetic Lower-Limb Component. Journal of Prosthetics and Orthotics, 2014, 26, 134-143.	0.4	19
13	Biomechanical influences of shoulder disarticulation prosthesis during standing and level walking. Prosthetics and Orthotics International, 2012, 36, 165-172.	1.0	10
14	Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomedizinische Technik, 2012, 57, 435-44.	0.8	24
15	Immediate Effects of a New Microprocessor-Controlled Prosthetic Knee Joint: A Comparative Biomechanical Evaluation. Archives of Physical Medicine and Rehabilitation, 2012, 93, 541-549.	0.9	74
16	Biomechanical Differences between Two Exoprosthetic Hip Joint Systems during Level Walking. Prosthetics and Orthotics International, 2010, 34, 449-460.	1.0	34
17	Analysis of biomechanical effectiveness of valgus-inducing knee brace for osteoarthritis of knee. Journal of Rehabilitation Research and Development, 2010, 47, 419.	1.6	55
18	Comparative Biomechanical Analysis of Current Microprocessor-Controlled Prosthetic Knee Joints. Archives of Physical Medicine and Rehabilitation, 2010, 91, 644-652.	0.9	131

THOMAS SCHMALZ

#	Article	IF	CITATIONS
19	The Safety of C-Leg: Biomechanical Tests. Journal of Prosthetics and Orthotics, 2009, 21, 2-15.	0.4	69
20	Biomechanical analysis of stair ambulation in lower limb amputees. Gait and Posture, 2007, 25, 267-278.	1.4	121
21	The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle–foot-orthoses. Clinical Biomechanics, 2006, 21, 631-639.	1.2	65
22	Energy expenditure and biomechanical characteristics of lower limb amputee gait:. Gait and Posture, 2002, 16, 255-263.	1.4	340