Derek Groen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1179301/publications.pdf

Version: 2024-02-01

331670 345221 1,491 73 21 36 citations h-index g-index papers 77 77 77 1898 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	FACS: A geospatial agent-based simulator for analysing COVID-19 spread and public health measures on local regions. Journal of Simulation, 2022, 16, 355-373.	1.5	30
2	STAMINA: Bioinformatics Platform for Monitoring and Mitigating Pandemic Outbreaks. Technologies, 2022, 10, 63.	5.1	1
3	The impact of uncertainty on predictions of the CovidSim epidemiological code. Nature Computational Science, 2021, 1, 128-135.	8.0	45
4	VECMAtk: a scalable verification, validation and uncertainty quantification toolkit for scientific simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200221.	3.4	15
5	Uncertainty quantification of dynamic earthquake rupture simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200076.	3.4	1
6	Reliability and reproducibility in computational science: implementing validation, verification and uncertainty quantification <i>in silico</i> . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200409.	3.4	9
7	Sensitivity-driven simulation development: a case study in forced migration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200077.	3.4	7
8	A route pruning algorithm for an automated geographic location graph construction. Scientific Reports, 2021, 11, 11547.	3.3	4
9	P-Flee: An Efficient Parallel Algorithm for Simulating Human Migration. , 2021, , .		0
10	Tutorial applications for Verification, Validation and Uncertainty Quantification using VECMA toolkit. Journal of Computational Science, 2021, 53, 101402.	2.9	4
11	Building Confidence in Simulation: Applications of EasyVVUQ. Advanced Theory and Simulations, 2020, 3, 1900246.	2.8	21
12	How Policy Decisions Affect Refugee Journeys in South Sudan: A Study Using Automated Ensemble Simulations. Jasss, 2020, 23, .	1.8	14
13	Towards Accurate Simulation of Global Challenges on Data Centers Infrastructures via Coupling of Models and Data Sources. Lecture Notes in Computer Science, 2020, , 410-424.	1.3	0
14	Introducing VECMAtk - Verification, Validation and Uncertainty Quantification for Multiscale and HPC Simulations. Lecture Notes in Computer Science, 2019, , 479-492.	1.3	14
15	Mastering the scales: a survey on the benefits of multiscale computing software. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180147.	3.4	30
16	Building Global Research Capacity in Public Health: The Case of a Science Gateway for Physical Activity Lifelong Modelling and Simulation. , 2019, , .		3
17	Towards Modelling the Effect of Evolving Violence on Forced Migration. , 2019, , .		2
18	Hybrid Simulation Development – Is It Just Analytics?. , 2019, , .		2

#	Article	IF	Citations
19	Patterns for High Performance Multiscale Computing. Future Generation Computer Systems, 2019, 91, 335-346.	7.5	20
20	Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine. Briefings in Bioinformatics, 2019, 20, 1057-1062.	6.5	15
21	Impact of immigrants on a multi-agent economical system. PLoS ONE, 2018, 13, e0197509.	2.5	O
22	Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements. Frontiers in Physiology, 2018, 9, 721.	2.8	22
23	Development of a Multiscale Simulation Approach for Forced Migration. Lecture Notes in Computer Science, 2018, , 869-875.	1.3	2
24	A generalized simulation development approach for predicting refugee destinations. Scientific Reports, 2017, 7, 13377.	3.3	55
25	Multiscale Modelling and Simulation, 14th International Workshop. Procedia Computer Science, 2017, 108, 1811-1812.	2.0	0
26	Multiscale computing in the exascale era. Journal of Computational Science, 2017, 22, 15-25.	2.9	54
27	A Serious Video Game To Support Decision Making On Refugee Aid Deployment Policy. Procedia Computer Science, 2017, 108, 205-214.	2.0	11
28	Towards an automated framework for agent-based simulation of refugee movements., 2017,,.		9
29	Multiscale Modelling and Simulation, 13th International Workshop. Procedia Computer Science, 2016, 80, 1242-1243.	2.0	1
30	FabSim: Facilitating computational research through automation on large-scale and distributed e-infrastructures. Computer Physics Communications, 2016, 207, 375-385.	7.5	32
31	Simulating Refugee Movements: Where would You Go?. Procedia Computer Science, 2016, 80, 2251-2255.	2.0	26
32	Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine. Methods in Molecular Biology, 2016, 1386, 375-404.	0.9	5
33	Multiscale Modelling and Simulation Workshop:12 Years of Inspiration. Procedia Computer Science, 2015, 51, 1082-1087.	2.0	7
34	From Thread to Transcontinental Computer: Disturbing Lessons in Distributed Supercomputing. , 2015, , .		2
35	Mechanism of Exfoliation and Prediction of Materials Properties of Clay–Polymer Nanocomposites from Multiscale Modeling. Nano Letters, 2015, 15, 8108-8113.	9.1	45
36	Ten Simple Rules for a Successful Cross-Disciplinary Collaboration. PLoS Computational Biology, 2015, 11, e1004214.	3.2	46

#	Article	IF	CITATIONS
37	An automated multiscale ensemble simulation approach for vascular blood flow. Journal of Computational Science, 2015, 9, 150-155.	2.9	14
38	Chemically Specific Multiscale Modeling of Clay–Polymer Nanocomposites Reveals Intercalation Dynamics, Tactoid Selfâ€Assembly and Emergent Materials Properties. Advanced Materials, 2015, 27, 966-984.	21.0	98
39	Science hackathons for developing interdisciplinary research and collaborations. ELife, 2015, 4, e09944.	6.0	23
40	Weighted Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others?. Lecture Notes in Computer Science, 2015, , 28-38.	1.3	3
41	Ten Simple Rules for Effective Computational Research. PLoS Computational Biology, 2014, 10, e1003506.	3.2	47
42	Towards a computational system to support clinical treatment decisions for diagnosed cerebral aneurysms. , $2014, \ldots$		0
43	Survey of Multiscale and Multiphysics Applications and Communities. Computing in Science and Engineering, 2014, 16, 34-43.	1.2	56
44	Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains. Physical Review E, 2014, 89, 023303.	2.1	48
45	Performance of distributed multiscale simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130407.	3.4	31
46	Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis. Journal of the Royal Society Interface, 2014, 11, 20140543.	3.4	87
47	Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment. Journal of Computational Science, 2014, 5, 719-731.	2.9	57
48	Impact of blood rheology on wall shear stress in a model of the middle cerebral artery. Interface Focus, 2013, 3, 20120094.	3.0	41
49	Multiscale Computing with the Multiscale Modeling Library and Runtime Environment. Procedia Computer Science, 2013, 18, 1097-1105.	2.0	18
50	Analysing and modelling the performance of the HemeLB lattice-Boltzmann simulation environment. Journal of Computational Science, 2013, 4, 412-422.	2.9	46
51	Support for Multiscale Simulations with Molecular Dynamics. Procedia Computer Science, 2013, 18, 1116-1125.	2.0	7
52	Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations. Interface Focus, 2013, 3, 20120087.	3.0	35
53	THE COSMOGRID SIMULATION: STATISTICAL PROPERTIES OF SMALL DARK MATTER HALOS. Astrophysical Journal, 2013, 767, 146.	4.5	76
54	Distributed Multiscale Simulations of Clay-Polymer Nanocomposites. Materials Research Society Symposia Proceedings, 2012, 1470, 6.	0.1	6

#	Article	IF	Citations
55	Distributed Infrastructure for Multiscale Computing. , 2012, , .		9
56	High-performance gravitational N -body simulations on a planet-wide-distributed supercomputer. Computational Science & Discovery, 2011, 4, 015001.	1.5	9
57	Developing an infrastructure to support multiscale modelling and simulation. , 2011, , .		1
58	Taxonomy of Multiscale Computing Communities. , 2011, , .		5
59	Modelling Distributed Multiscale Simulation Performance: An Application to Nanocomposites., 2011,,.		2
60	Simulating the Universe on an Intercontinental Grid. Computer, 2010, 43, 63-70.	1.1	16
61	A platform independent communication library for distributed computing. Procedia Computer Science, 2010, 1, 2699-2706.	2.0	0
62	The Living Application: a Self-Organizing System for Complex Grid Tasks. International Journal of High Performance Computing Applications, 2010, 24, 185-193.	3.7	3
63	A lightweight communication library for distributed computing. Computational Science & Discovery, 2010, 3, 015002.	1.5	11
64	Running Parallel Applications with Topology-Aware Grid Middleware. , 2009, , .		8
65	A multiphysics and multiscale software environment for modeling astrophysical systems. New Astronomy, 2009, 14, 369-378.	1.8	146
66	On the Origin of Grid Species: The Living Application. Lecture Notes in Computer Science, 2009, , 205-212.	1.3	5
67	A parallel gravitational N-body kernel. New Astronomy, 2008, 13, 285-295.	1.8	10
68	Distributed N-body simulation on the grid using dedicated hardware. New Astronomy, 2008, 13, 348-358.	1.8	4
69	Simulating N-Body Systems on the Grid Using Dedicated Hardware. Lecture Notes in Computer Science, 2008, , 86-95.	1.3	2
70	A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems. Lecture Notes in Computer Science, 2008, , 207-216.	1.3	6
71	Computational Engineering on the Grid: Crafting a Distributed Virtual Reactor. , 2006, , .		3
72	Experience with the International Testbed in the CrossGrid Project. Lecture Notes in Computer Science, 2005, , 98-110.	1.3	1