Silvia Melgar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1179280/publications.pdf

Version: 2024-02-01

86	3,472	29 h-index	57
papers	citations		g-index
88	88	88	6198
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Macrophage cytokine responses to commensal Gram-positive Lactobacillus salivarius strains are TLR2-independent and Myd88-dependent. Scientific Reports, 2021, 11, 5896.	1.6	12
2	Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Reports, 2021, 35, 109093.	2.9	8
3	Bifidobacterium breve Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4+ T Cells. Frontiers in Microbiology, 2021, 12, 653587.	1.5	14
4	Regulation of CEACAM Family Members by IBD-Associated Triggers in Intestinal Epithelial Cells, Their Correlation to Inflammation and Relevance to IBD Pathogenesis. Frontiers in Immunology, 2021, 12, 655960.	2.2	22
5	Inflammasome Signaling Regulates the Microbial–Neuroimmune Axis and Visceral Pain in Mice. International Journal of Molecular Sciences, 2021, 22, 8336.	1.8	9
6	TNF- $\hat{l}\pm$ synergises with IFN- \hat{l}^3 to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells. Cell Death and Disease, 2021, 12, 864.	2.7	54
7	Human BCL-G regulates secretion of inflammatory chemokines but is dispensable for induction of apoptosis by IFN- \hat{l}^3 and TNF- \hat{l}^\pm in intestinal epithelial cells. Cell Death and Disease, 2020, 11, 68.	2.7	18
8	Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Access Microbiology, 2020, 2 , .	0.2	O
9	Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome, 2019, 7, 7.	4.9	60
10	Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine and Growth Factor Reviews, 2019, 47, 21-31.	3.2	36
11	<p>Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 1027-1038.	3.3	41
12	Visualizing the colonization dynamics of pathogenic bacteria labelled by upconverting nanoparticles inside the gut. , $2019, \dots$		0
13	A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. MSystems, 2018, 3, .	1.7	148
14	Visualising Bacterial Colonization Dynamics Inside the Gut Using Upconverting Nanoparticles Luminescence Imaging. , $2018, \ldots$		0
15	Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Applied Microbiology and Biotechnology, 2018, 102, 10645-10663.	1.7	3
16	Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E1-E11.	1.8	23
17	Research Gaps in Diet and Nutrition in Inflammatory Bowel Disease. A Topical Review by D-ECCO Working Group [Dietitians of ECCO]. Journal of Crohn's and Colitis, 2017, 11, 1407-1419.	0.6	84
18	Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cellular and Molecular Life Sciences, 2017, 74, 141-151.	2.4	19

#	Article	IF	CITATIONS
19	The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Frontiers in Immunology, 2017, 8, 838.	2.2	349
20	Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS ONE, 2017, 12, e0173817.	1.1	25
21	The microbiome and food that fuels the fire of inflammation. Biochemist, 2017, 39, 16-19.	0.2	0
22	Su1939 Neuro-Immune Changes in IBS: A Link Between Microbiota, TLRs and Sensory-Related Markers?. Gastroenterology, 2016, 150, S594.	0.6	0
23	IL-36 $\hat{l}\pm$ expression is elevated in ulcerative colitis and promotes colonic inflammation. Mucosal Immunology, 2016, 9, 1193-1204.	2.7	106
24	A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1254-1266.	0.5	89
25	Sa1797 Altered Immunometabolism As a Result of Colonic Inflammation and Westernized Diet in Experimental Models of Colitis and Colitis-Associated Colorectal Cancer. Gastroenterology, 2015, 148, S-335.	0.6	0
26	Effects of anti-inflammatory therapy on bursting pressure of colonic anastomosis in murine dextran sulfate sodium induced colitis. Scandinavian Journal of Gastroenterology, 2015, 50, 991-1001.	0.6	10
27	Are Proton Pump Inhibitors Affecting Intestinal Microbiota Health?. Gastroenterology, 2015, 149, 848-850.	0.6	5
28	Activation of liver X receptor suppresses the production of the IL-12 family of cytokines by blocking nuclear translocation of NF-ÎBp50. Innate Immunity, 2014, 20, 675-687.	1.1	15
29	273 High Fat Feeding Alters Gut Microbiota and Protects Mice From Colitis and Colitis-Associated Colorectal Cancer. Gastroenterology, 2014, 146, S-65.	0.6	0
30	409 The Colonic Adherent-Invasive Escherichia coli Strain HM605 Induces Anti-Apoptotic Responses in Intestinal Epithelial Cells, Reduces Barrier Integrity and Worsens Experimental Colitis. Gastroenterology, 2014, 146, S-88.	0.6	0
31	The complex role of inflammasomes in the pathogenesis of Inflammatory Bowel Diseases – Lessons learned from experimental models. Cytokine and Growth Factor Reviews, 2014, 25, 715-730.	3.2	54
32	Su2044 Evidence of on-Going Activation of the CXCR3 Chemokine System in Irritable Bowel Syndrome (IBS). Gastroenterology, 2014, 146, S-530-S-531.	0.6	1
33	Bcl-3 deficiency protects against dextran-sodium sulphate-induced colitis in the mouse. Clinical and Experimental Immunology, 2013, 173, 332-342.	1.1	20
34	Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis. Nature Immunology, 2013, 14, 927-936.	7.0	83
35	Sa1818 Natural Killer Cells Contribute to Clearance of the Enteric Pathogen Citrobacter Rodentium Through Direct and Indirect Mechanisms. Gastroenterology, 2013, 144, S-312-S-313.	0.6	0
36	Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. Journal of Controlled Release, 2013, 168, 28-34.	4.8	61

#	Article	IF	Citations
37	Pattern recognition receptorsâ€"Molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine and Growth Factor Reviews, 2013, 24, 91-104.	3.2	106
38	Natural killer cells protect mice from DSS-induced colitis by regulating neutrophil function via the NKG2A receptor. Mucosal Immunology, 2013, 6, 1016-1026.	2.7	55
39	Natural Killer Cells Protect against Mucosal and Systemic Infection with the Enteric Pathogen Citrobacter rodentium. Infection and Immunity, 2013, 81, 460-469.	1.0	53
40	Shining a Light on Intestinal Traffic. Clinical and Developmental Immunology, 2012, 2012, 1-14.	3.3	8
41	The Sphingosine-1-Phosphate Analogue FTY720 Impairs Mucosal Immunity and Clearance of the Enteric Pathogen Citrobacter rodentium. Infection and Immunity, 2012, 80, 2712-2723.	1.0	23
42	Tu1969 Elevated Expression of the Cytosolic DNA Sensors AIM2 and ZBP1/DAI in Active Ulcerative Colitis but Not Crohn's Disease Colonic Tissue. Gastroenterology, 2012, 142, S-889.	0.6	0
43	Sa1870 MiR-375 is a Key Regulator of Intestinal Homeostasis in Response to Inflammatory Stress. Gastroenterology, 2012, 142, S-346.	0.6	2
44	Tu1843 Deficiency in ATG16L1 Increases the Ability of the Adherent-Invasive Escherichia coli (HM605) to Replicate in and Reduce Barrier Integrity of Intestinal Epithelial Cells. Gastroenterology, 2012, 142, S-859.	0.6	0
45	Su2001 Altered Expression and Activation of the CXCR3/CXCL10 Chemokine System in Irritable Bowel Syndrome (IBS) Mucosal Biopsy Tissue. Gastroenterology, 2012, 142, S-557.	0.6	0
46	Mechanism of protection of transepithelial barrier function by <i>Lactobacillus salivarius </i> : strain dependence and attenuation by bacteriocin production. American Journal of Physiology - Renal Physiology, 2012, 303, G1029-G1041.	1.6	75
47	1109 NK Cells Protect Mice During Acute Experimental Colitis by Regulating Neutrophil Function via NKG2A-dependent Mechanisms. Gastroenterology, 2012, 142, S-200-S-201.	0.6	0
48	Tu1430 The Role of IL-9/Il9r in Irritable Bowel Syndrome. Gastroenterology, 2012, 142, S-830.	0.6	0
49	Mo1098 Differential Expression of Epigenetic Modifier Genes in Inflammatory Bowel Disease Colonic Tissue - PRDM1 and PRDM8 are up-Regulated in Active Ulcerative Colitis. Gastroenterology, 2012, 142, S-595.	0.6	1
50	Modelling of Mouse Experimental Colitis by Global Property Screens: A Holistic Approach to Assess Drug Effects in Inflammatory Bowel Disease. PLoS ONE, 2012, 7, e30005.	1.1	8
51	The Immunomodulatory Drug FTY720 Prevents Clearance of Citrobacter rodentium Infection in Mice. Gastroenterology, 2011, 140, S-325.	0.6	0
52	MiR-146a Negatively Regulates IL-17A Inflammatory Response and is Elevated in Intestinal Epithelial Cells From Inflammatory Bowel Disease (IBD) Patients. Gastroenterology, 2011, 140, S-84.	0.6	1
53	Stimulation of T-Cells in Irritable Bowel Syndrome (IBS) Mucosal Biopsy Tissue Releases Cytokines Which Selectively Activate Submucosal Neurons. Gastroenterology, 2011, 140, S-129.	0.6	0
54	IFN-Î ³ and TNF-α Synergise to Induce Expression of the Novel PRO-Apoptotic Gene BCL-G and Apoptosis in Intestinal Epithelial Cells and BCL-G Expression is Reduced in Inflammatory Bowel Disease (IBD) and Colon Cancer. Gastroenterology, 2011, 140, S-648.	0.6	0

#	Article	IF	CITATIONS
55	Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discovery Today, 2011, 16, 203-218.	3.2	103
56	Induction and Activation of Adaptive Immune Populations During Acute and Chronic Phases of a Murine Model of Experimental Colitis. Digestive Diseases and Sciences, 2011, 56, 79-89.	1.1	88
57	IL-1 receptor-associated kinase M downregulates DSS-induced colitisâ€. Inflammatory Bowel Diseases, 2010, 16, 1778-1786.	0.9	27
58	Use of bioluminescence imaging to track neutrophil migration and its inhibition in experimental colitis. Clinical and Experimental Immunology, 2010, 162, 188-196.	1.1	30
59	Technical Advance: Function and efficacy of an α4-integrin antagonist using bioluminescence imaging to detect leukocyte trafficking in murine experimental colitis. Journal of Leukocyte Biology, 2010, 88, 1271-1278.	1.5	14
60	Inflammatory bowel disease—From mechanisms to treatment strategies. Autoimmunity, 2010, 43, 463-477.	1.2	44
61	Gender dependent importance of IRAK-1 in dextran sulfate sodium induced colitis. Cellular Immunology, 2009, 259, 27-32.	1.4	13
62	T1718 Natural Killer Cell Responses in Both Acute and Chronic Phases of a Murine Model of Experimental Colitis. Gastroenterology, 2009, 136, A-565.	0.6	0
63	S1652 The Effect of the Farnesoid X Receptor (FXR) and It's Agonist - GSK488062B - On Experimental Models of Colitis and Cytokine Production from IBD Tissue. Gastroenterology, 2009, 136, A-243.	0.6	0
64	Predicting and monitoring colitis development in mice by micro-computed tomography. Inflammatory Bowel Diseases, 2008, 14, 491-499.	0.9	15
65	Lack of colonic inflammationâ€induced acute visceral hypersensitivity to colorectal distension in Na _v 1.9 knockout mice. European Journal of Pain, 2008, 12, 934-944.	1.4	37
66	The application and relevance of ex vivo culture systems for assessment of IBD treatment in murine models of colitis. Pharmacological Research, 2008, 58, 222-231.	3.1	14
67	Dextran sulphate sodium induces acute colitis and alters hepatic function in hamsters. International Immunopharmacology, 2008, 8, 20-27.	1.7	26
68	Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. International Immunopharmacology, 2008, 8, 836-844.	1.7	169
69	Intra-colonic administration of the TLR7 agonist R-848 induces an acute local and systemic inflammation in mice. Biochemical and Biophysical Research Communications, 2008, 367, 242-248.	1.0	14
70	Psychological stress reactivates dextran sulfate sodium-induced chronic colitis in mice. Stress, 2008, 11, 348-362.	0.8	41
71	Mice with experimental colitis show an altered metabolism with decreased metabolic rate. American Journal of Physiology - Renal Physiology, 2007, 292, G165-G172.	1.6	39
72	High-throughput magnetic resonance imaging in murine colonic inflammation. Biochemical and Biophysical Research Communications, 2007, 355, 1102-1107.	1.0	22

#	Article	IF	Citations
73	Dextran Sulfate Sodium-induced Colitis Generates a Transient Thymic Involution? Impact on Thymocyte Subsets. Scandinavian Journal of Immunology, 2007, 65, 421-429.	1.3	27
74	Local production of chemokines and prostaglandin E2 in the acute, chronic and recovery phase of murine experimental colitis. Cytokine, 2006, 35, 275-283.	1.4	43
75	Magnetic resonance imaging of experimental mouse colitis and association with inflammatory activity. Inflammatory Bowel Diseases, 2006, 12, 478-485.	0.9	48
76	Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. American Journal of Physiology - Renal Physiology, 2005, 288, G1328-G1338.	1.6	455
77	Anti-inflammatory effects of budesonide in intestinal epithelial cells. Pharmacological Research, 2005, 52, 422-428.	3.1	12
78	Cytolytic Capabilities of Lamina Propria and Intraepithelial Lymphocytes in Normal and Chronically Inflamed Human Intestine. Scandinavian Journal of Immunology, 2004, 60, 167-177.	1.3	16
79	Over-expression of interleukin 10 in mucosal T cells of patients with active ulcerative colitis. Clinical and Experimental Immunology, 2003, 134, 127-137.	1.1	132
80	Paradoxical coexpression of proinflammatory and down-regulatory cytokines in intestinal T cells in childhood celiac disease. Gastroenterology, 2002, 123, 667-678.	0.6	155
81	Human small intestinal mucosa harbours a small population of cytolytically active CD8+ alphabeta T lymphocytes. Immunology, 2002, 106, 476-485.	2.0	26
82	Neuroendocrine changes in colon of mice with a disrupted IL-2 gene. Clinical and Experimental Immunology, 2000, 120, 424-433.	1.1	22
83	Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-gamma delta expression. Gut, 2000, 47, 215-227.	6.1	117
84	An apoptotic response by J774 macrophage cells is common upon infection with diarrheagenicEscherichia coli. FEMS Microbiology Letters, 1999, 172, 29-34.	0.7	17
85	Microbial Neuro-Immune Interactions and the Pathophysiology of IBD. , 0, , .		1
86	An apoptotic response by J774 macrophage cells is common upon infection with diarrheagenic Escherichia coli. , 0, .		3