Harden M Mcconnell

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/11792447/harden-m-mcconnell-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21,668 69 145 200 h-index g-index citations papers 6.8 6.57 203 22,272 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
200	Understanding membranes. ACS Chemical Biology, 2008, 3, 265-7	4.9	7
199	Dynamic Properties of Membranes; Membrane Immunochemistry. <i>Advances in Chemical Physics</i> , 2007 , 249-285		2
198	Cholesterol depletion induces solid-like regions in the plasma membrane. <i>Biophysical Journal</i> , 2006 , 90, 927-38	2.9	96
197	Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. <i>Biophysical Journal</i> , 2005 , 88, 334-47	2.9	105
196	Cytokines elicited by T cell epitopes from a synovial autoantigen: altered peptide ligands can reduce interferon-gamma and interleukin-10 production. <i>Arthritis and Rheumatism</i> , 2003 , 48, 2375-85		6
195	Liquid-liquid immiscibility in membranes. <i>Annual Review of Biophysics and Biomolecular Structure</i> , 2003 , 32, 469-92		221
194	Formation of two peptide/MHC II isomers is catalyzed differentially by HLA-DM. <i>Biochemistry</i> , 2003 , 42, 838-47	3.2	27
193	Condensed complexes of cholesterol and phospholipids. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2003 , 1610, 159-73	3.8	335
192	Relationship between kinetic stability and immunogenicity of HLA-DR4/peptide complexes. <i>European Journal of Immunology</i> , 2002 , 32, 662-70	6.1	52
191	Structural factors contributing to DM susceptibility of MHC class II/peptide complexes. <i>Journal of Immunology</i> , 2002 , 169, 5109-17	5.3	58
190	Critical points in charged membranes containing cholesterol. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 13391-6	11.5	19
189	Thermal Dissociation of Condensed Complexes of Cholesterol and Phospholipid. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 4755-4762	3.4	27
188	Two fatty acids can replace one phospholipid in condensed complexes with cholesterol. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2002 , 1564, 1-4	3.8	13
187	A thermodynamic model for extended complexes of cholesterol and phospholipid. <i>Biophysical Journal</i> , 2002 , 83, 2039-52	2.9	30
186	Translational diffusion of individual class II MHC membrane proteins in cells. <i>Biophysical Journal</i> , 2002 , 83, 2681-92	2.9	224
185	Peptide binding to active class II MHC protein on the cell surface. <i>Journal of Immunology</i> , 2001 , 166, 66	89 . 5	16
184	Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers. <i>Biophysical Journal</i> , 2001 , 81, 2774-85	2.9	79

183	Stoichiometry of cholesterol-sphingomyelin condensed complexes in monolayers. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2001 , 1511, 1-6	3.8	54
182	Kinetics of registry selection of chimeric peptides binding to MHC II. <i>Biochemistry</i> , 2001 , 40, 10284-92	3.2	4
181	Multiple cholesterolphospholipid complexes in membranes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2000 , 171, 13-23	5.1	7
180	Miscibility critical pressures in monolayers of ternary lipid mixtures. <i>Biophysical Journal</i> , 2000 , 79, 2033-	42 9	43
179	Chemical activity of cholesterol in membranes. <i>Biochemistry</i> , 2000 , 39, 8119-24	3.2	142
178	Coupling of Size and Shape Equilibration in Lipid Monolayer Domains. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 1657-1662	3.4	6
177	Kinetics of peptide binding to the class II MHC protein I-Ek. <i>Biochemistry</i> , 2000 , 39, 1048-58	3.2	47
176	Electric Field Effects in Multicomponent Fluid Lipid Membranes. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 119-124	3.4	18
175	pH stability of HLA-DR4 complexes with antigenic peptides. <i>Biochemistry</i> , 2000 , 39, 14558-66	3.2	15
174	Phase Behavior of Multicomponent Phospholipid Mixtures with Cholesterol. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9918-9928	3.4	9
173	Saturated Phospholipids with High Melting Temperatures Form Complexes with Cholesterol in Monolayers. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 7522-7527	3.4	71
172	Lateral Reorganization of Fluid Lipid Membranes in Response to the Electric Field Produced by a Buried Charge. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 11409-11415	3.4	23
171	Stripe Phases in Lipid Monolayers near a Miscibility Critical Point. <i>Physical Review Letters</i> , 1999 , 82, 1607	2 / 1. 6 05	102
170	Condensed complexes of cholesterol and phospholipids. <i>Biophysical Journal</i> , 1999 , 77, 1507-17	2.9	210
169	Interpretation of biphasic dissociation kinetics for isomeric class II major histocompatibility complex-peptide complexes. <i>Biophysical Journal</i> , 1999 , 77, 2451-61	2.9	12
168	Cholesterol P hospholipid Complexes in Membranes. <i>Journal of the American Chemical Society</i> , 1999 , 121, 486-487	16.4	99
167	Conformational isomers of a class II MHC-peptide complex in solution. <i>Journal of Molecular Biology</i> , 1999 , 286, 207-18	6.5	49
166	Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. <i>Immunity</i> , 1998 , 9, 459-66	32.3	329

165	Formation of a highly peptide-receptive state of class II MHC. <i>Immunity</i> , 1998 , 9, 699-709	32.3	122
164	Kinetic isomers of a class II MHC-peptide complex. <i>Biochemistry</i> , 1998 , 37, 17371-80	3.2	30
163	Hydrodynamics of Domain Size Equilibration in Monolayers. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 6927-6931	3.4	10
162	Potentiometric Measurement of Intracellular Redox Activity. <i>Journal of the American Chemical Society</i> , 1998 , 120, 2464-2473	16.4	82
161	Evidence that the autoimmune antigen myelin basic protein (MBP) Ac1-9 binds towards one end of the major histocompatibility complex (MHC) cleft. <i>Journal of Experimental Medicine</i> , 1998 , 187, 1505-16	16.6	43
160	Kinetics and extent of T cell activation as measured with the calcium signal. <i>Journal of Experimental Medicine</i> , 1997 , 185, 1815-25	16.6	146
159	Cloverleaf Monolayer Domains. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 381-388	3.4	23
158	Liquid-liquid immiscibility in lipid monolayers. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1997 , 1329, 7-11	3.8	38
157	Molecular modeling and design of invariant chain peptides with altered dissociation kinetics from class II MHC. <i>Biochemistry</i> , 1996 , 35, 14734-42	3.2	23
156	Isomeric Complexes of Peptides with Class II Proteins of the Major Histocompatibility Complex. Journal of the American Chemical Society, 1996 , 118, 977-980	16.4	11
155	Equilibrium Thermodynamics of Lipid Monolayer Domains. <i>Langmuir</i> , 1996 , 12, 4897-4904	4	46
154	Critical pressures in multicomponent lipid monolayers. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1996 , 1280, 169-72	3.8	12
153	Altered T cell receptor ligands trigger a subset of early T cell signals. <i>Immunity</i> , 1996 , 5, 125-35	32.3	139
152	Stripe Phase Hydrodynamics in Lipid Monolayers. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 7722-772	28	9
151	Book Reviews Force of Nature, Linus Pauling, and Linus Pauling in His Own Words, reviewed by H. M. McConnell * Vignettes * Books Re ceived. <i>Science</i> , 1996 , 271, 603-604	33.3	2
150	Insight into antibody combining sites using nuclear magnetic resonance and spin label haptens. <i>Advances in Protein Chemistry</i> , 1996 , 49, 135-48		3
149	Three-phase intersection points in monolayers. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1995 , 102, 167-172	5.1	5
148	Kinetics of the reactions between the invariant chain (85-99) peptide and proteins of the murine class II MHC. <i>International Immunology</i> , 1995 , 7, 1397-404	4.9	50

147	Reactions of Peptides with Class II Proteins of the Major Histocompatibility Complex. <i>Journal of the American Chemical Society</i> , 1995 , 117, 10429-10433	16.4	20
146	Kinetics of the reaction of a myelin basic protein peptide with soluble IAu. <i>Biochemistry</i> , 1995 , 34, 14874	3 82	21
145	Inhibition of class II MHC-peptide complex formation by protease inhibitors. <i>Journal of Immunological Methods</i> , 1994 , 173, 127-31	2.5	
144	Site-directed mutagenesis and 1H nuclear magnetic resonance of an anti-dinitrophenyl spin label antibody. <i>Journal of Molecular Biology</i> , 1994 , 244, 301-18	6.5	12
143	Formation and dissociation of short-lived class II MHC-peptide complexes. <i>Biochemistry</i> , 1994 , 33, 1861-8	3.2	25
142	The kinetics of peptide reactions with class II major histocompatibility complex membrane proteins. <i>Accounts of Chemical Research</i> , 1993 , 26, 442-448	24.3	10
141	Surface dipole densities in lipid monolayers. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 6686-6691		100
140	Circle to dogbone: shapes and shape transitions of lipid monolayer domains. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 13419-13424		50
139	Field-gradient electrophoresis of lipid domains. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 2962-2966		31
138	Anomalous kinetics in antibody-antigen interactions. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 3034-30	039	7
137	Quantized symmetry of liquid monolayer domains. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 9532-953	9	88
136	Note on the theory of the sizes and shapes of lipid domains in monolayers. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 7101-7103		33
135	Mechanism of peptide release from major histocompatibility complex class II molecules. <i>Journal of the American Chemical Society</i> , 1992 , 114, 9680-9682	16.4	14
134	Antigenic peptide binding to the mouse major histocompatibility complex class II protein I-Ek. Peptide stabilization of the quarternary structure of I-Ek. <i>Journal of the American Chemical Society</i> , 1992 , 114, 3506-3511	16.4	10
133	Line tension between liquid domains in lipid monolayers. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 6820-6824		173
132	Binding of truncated peptides to the MHC molecule IA (d). FEBS Letters, 1991, 294, 244-6	3.8	6
131	Structural and kinetic studies of the Fab fragment of a monoclonal anti-spin label antibody by nuclear magnetic resonance. <i>Journal of Molecular Biology</i> , 1991 , 221, 257-70	6.5	21
130	Harmonic shape transitions in lipid monolayer domains. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 4728	3-4731	86

Monomolecular Films and Long-Range Dipole Forces. *Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics*, **1989**, 176, 321-327

128	A kinetic intermediate in the reaction of an antigenic peptide and I-Ek. <i>Nature</i> , 1989 , 337, 274-6	50.4	123
127	Critical shape transitions of monolayer lipid domains. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1989 , 86, 6445-8	11.5	78
126	Specificities of Germ Line Antibodies 1989 , 367-376		
125	Line-shape analysis of NMR difference spectra of an anti-spin-label antibody. <i>Biochemistry</i> , 1988 , 27, 5161-5	3.2	7
124	Crystallization of an anti-2,2,6,6-tetramethyl-1-piperidinyloxy-dinitrophenyl monoclonal antibody Fab fragment with and without bound hapten. <i>Journal of Molecular Biology</i> , 1988 , 203, 829-30	6.5	8
123	Shapes of finite two-dimensional lipid domains. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 4520-4525		221
122	Antigen Presentation by Supported Planar Membranes Containing Purified Major Histocompatibility Complex Proteins 1988 , 143-155		1
121	Critical mixing in monolayer mixtures of phospholipid and cholesterol. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 1715-1718		128
120	Physical Chemistry and Biological Strategy of Antigen Recognition. <i>Springer Series in Biophysics</i> , 1987 , 5-9		
119	T-cell-mediated association of peptide antigen and major histocompatibility complex protein detected by energy transfer in an evanescent wave-field. <i>Nature</i> , 1986 , 320, 179-81	50.4	171
118	Diversity of Molecular Recognition: The Combining Sites of Monoclonal Anti Spin Label Antibodies 1986 , 87-91		
117	Mono- and bilayers of phospholipids at interfaces: interlayer coupling and phase stability. <i>The Journal of Physical Chemistry</i> , 1985 , 89, 3592-3595		45
116	NMR technique for assessing contributions of heavy and light chains to an antibody combining site. <i>Nature</i> , 1985 , 315, 65-7	50.4	48
115	Cholesterol stabilizes the crystal-liquid interface in phospholipid monolayers. <i>The Journal of Physical Chemistry</i> , 1985 , 89, 4453-4459		171
114	Cytochemical study of macrophage lysosomal inorganic trimetaphosphatase and acid phosphatase. <i>Journal of Ultrastructure Research</i> , 1985 , 90, 80-8		14
113	Two-dimensional chiral crystals of phospholipid. <i>Nature</i> , 1984 , 310, 47-9	50.4	319
112	Distances of tyrosine residues from a spin-label hapten in the combining site of a specific monoclonal antibody. <i>Biochemistry</i> , 1984 , 23, 5372-5	3.2	33

111	Magnetic resonance of a monoclonal anti-spin-label antibody. <i>Biochemistry</i> , 1984 , 23, 1138-1142	3.2	63
110	Nonaromatic amino acids in the combining site region of a monoclonal anti-spin-label antibody. <i>Biochemistry</i> , 1984 , 23, 6470-3	3.2	15
109	Covalent linkage of a synthetic peptide to a fluorescent phospholipid and its incorporation into supported phospholipid monolayers. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1984 , 772, 10-9	3.8	24
108	Superoxide enhances photobleaching during cellular immune attack against fluorescent lipid monolayer membranes. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1984 , 772, 20-8	3.8	12
107	Binding of cytotoxic T-lymphocytes to supported lipid monolayers containing trypsinized H-2Kk. <i>Molecular Immunology</i> , 1983 , 20, 1227-31	4.3	24
106	Cytochemical study of liposome and lipid vesicle phagocytosis. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1983 , 735, 77-85	3.8	15
105	2. Nitroxide Spin Labels. <i>Methods in Experimental Physics</i> , 1982 , 53-122		9
104	Monoclonal antibodies to a nitroxide lipid hapten. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 1982 , 721, 30-8	4.9	16
103	The lateral mobility and surface distribution of Lyt-1, Lyt-2 and Lyt-3 on mouse thymocytes. <i>Molecular Immunology</i> , 1982 , 19, 1481-9	4.3	7
102	Induction of helical liposomes by Ca2+-mediated intermembrane binding. <i>Nature</i> , 1982 , 296, 164-5	50.4	73
101	Phase Equilibria in binary mixtures of dimyristoylphosphatidylcholine and cardiolipin. <i>Biochemistry</i> , 1981 , 20, 6635-40	3.2	28
100	Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. <i>Biochemistry</i> , 1981 , 20, 4505	5-3.0	217
99	Physical properties of lipid monolayers on alkylated planar glass surfaces. <i>Biophysical Journal</i> , 1981 , 36, 421-7	2.9	135
98	Dynamic properties of binary mixtures of phosphatidylcholines and cholesterol. <i>Biochemistry</i> , 1980 , 19, 569-73	3.2	57
97	Kinetics of antibody-dependent activation of the first component of complement on lipid bilayer membranes. <i>Biochemical and Biophysical Research Communications</i> , 1980 , 93, 235-42	3.4	9
96	Lateral diffusion of M-13 coat protein in mixtures of phosphatidylcholine and cholesterol. <i>Biochemistry</i> , 1980 , 19, 5907-11	3.2	50
95	Triggering of the macrophage and neutrophil respiratory burst by antibody bound to a spin-label phospholipid hapten in model lipid bilayer membranes. <i>Biochemistry</i> , 1980 , 19, 5387-94	3.2	43
94	Kinetics of antibody-dependent binding of haptenated phospholipid vesicles to a macrophage-related cell line. <i>Biochemistry</i> , 1980 , 19, 5376-86	3.2	47

93	Specific antibody-dependent activation of neutrophils by liposomes containing spin-label lipid haptens. <i>Biochemical and Biophysical Research Communications</i> , 1979 , 86, 522-8	3.4	18
92	Reactions of photoradicals with nitroxide spin labels. <i>Journal of the American Chemical Society</i> , 1979 , 101, 3272-3277	16.4	6
91	Hydrogen atom exchange between nitroxides and hydroxylamines. <i>Journal of the American Chemical Society</i> , 1979 , 101, 3592-3595	16.4	31
90	Model lipid bilayer membranes as tragets for antibody-dependent, cellular- and complement-mediated immune attack. <i>Annals of the New York Academy of Sciences</i> , 1978 , 308, 124-38	6.5	25
89	Surface areas of lipid membranes. <i>Biochemistry</i> , 1978 , 17, 837-40	3.2	56
88	Multiple phase equilibria in binary mixtures of phospholipids. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1978 , 509, 462-73	3.8	79
87	Photochemical reaction of alkylpentacyanocobaltates with nitroxides. A new biophysical tool. <i>Journal of the American Chemical Society</i> , 1977 , 99, 7091-7092	16.4	13
86	Structural and dynamical aspects of membrane immunochemistry using model membranes. <i>Biochemistry</i> , 1977 , 16, 1209-17	3.2	74
85	Clustering of nitroxide spin labels in lipid bilayer membranes. <i>Journal of the American Chemical Society</i> , 1977 , 99, 1637-42	16.4	25
84	Lateral phase separations in binary mixtures of phospholipids having different charges and different crystalline structures. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1977 , 470, 303-16	3.8	101
83	Kinetics of phase equilibrium in a binary mixture of phospholipids. <i>Journal of the American Chemical Society</i> , 1976 , 98, 1314-8	16.4	21
82	Interactions of proteins and cholesterol with lipids in bilayer membranes. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1976 , 419, 206-22	3.8	186
81	Binding of antibodies to nitroxide spin labels and to the corresponding hydroxylamines. <i>Biochemical and Biophysical Research Communications</i> , 1976 , 73, 248-54	3.4	10
80	Molecular Motion in Biological Membranes 1976 , 525-560		44
79	Regulation of Membrane Flexibility in Human Erythrocytes. <i>Biochemistry</i> , 1975 , 14, 2798-803	3.2	76
78	Phase separations in phospholipd membranes. <i>Biochemistry</i> , 1975 , 14, 847-54	3.2	296
77	The paramagnetic resonance spectra of spin labels in phospholipid membranes. Journal of Magnetic		15
	Resonance, 1974 , 16, 1-28		

75	Lateral phase separations in Escherichia coli membranes. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1974 , 345, 220-30	3.8	132
74	A functional acetylcholine receptor in the human erythrocyte. <i>Biochemical and Biophysical Research Communications</i> , 1974 , 57, 726-32	3.4	59
73	The effect of prostaglandins E1 and E2 on the human erythrocyte as monitored by spin labels. <i>Biochemical and Biophysical Research Communications</i> , 1974 , 56, 478-83	3.4	110
72	Effect of a magnetic field on phospholipid membranes. <i>Chemical Physics Letters</i> , 1974 , 24, 310-313	2.5	36
71	Calculation of paramagnetic resonance spectra sensitive to very slow rotational motion. <i>Chemical Physics Letters</i> , 1974 , 25, 470-475	2.5	83
70	Spin-spin interactions between spin-labeled phospholipids incorporated into membranes. <i>Journal of Magnetic Resonance</i> , 1973 , 9, 474-485		13
69	Triphosphate spin-label studies of allosteric interactions in hemoglobin. <i>Annals of the New York Academy of Sciences</i> , 1973 , 222, 56-67	6.5	4
68	The use of spin labels for measuring distances in biological systems. <i>Annals of the New York Academy of Sciences</i> , 1973 , 222, 149-62	6.5	8
67	Equality of the rates of lateral diffusion of phosphatidylethanolamine and phosphatidylcholine spin labels in rabbit sarcoplasmic reticulum. <i>Annals of the New York Academy of Sciences</i> , 1973 , 222, 489-98	6.5	16
66	Lateral phase separation in phospholipid membranes. <i>Biochemistry</i> , 1973 , 12, 2351-60	3.2	892
65	Lateral phase separations in binary mixtures of cholesterol and phospholipids. <i>Biochemical and Biophysical Research Communications</i> , 1973 , 53, 446-51	3.4	243
64	Lateral phase separations and perpendicular transport in membranes. <i>Biochemical and Biophysical Research Communications</i> , 1973 , 55, 484-91	3.4	79
63	Spin-label-induced nuclear relaxation. Distances between bound saccharides, histidine-15, and tryptophan-123 on lysozyme in solution. <i>Biochemistry</i> , 1972 , 11, 3707-16	3.2	96
62	States of hemoglobin in solution. <i>Biochemistry</i> , 1972 , 11, 4792-9	3.2	36
61	A new spin-labelled substrate for -galactosidase and -galactoside permease. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 49, 1631-7	3.4	13
60	Rotational correlation time of spin-labeled alpha-chymotrypsin. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 46, 321-7	3.4	61
59	Binding of triphosphate spin labels to hemoglobin Kempsey. <i>Biochemical and Biophysical Research Communications</i> , 1972 , 47, 157-65	3.4	11
58	The fraction of the lipid in a biological membrane that is in a fluid state: a spin label assay. Biochemical and Biophysical Research Communications, 1972, 47, 273-81	3.4	113

57	THE FLEXIBILITY GRADIENT IN BIOLOGICAL MEMBRANES. <i>Annals of the New York Academy of Sciences</i> , 1972 , 195, 207-217	6.5	76
56	Inside-outside transitions of phospholipids in vesicle membranes. <i>Biochemistry</i> , 1971 , 10, 1111-20	3.2	847
55	Spin label orientation at the active site of -chymotrypsin in single crystals. <i>Biochemical and Biophysical Research Communications</i> , 1971 , 43, 651-7	3.4	15
54	Molecular motion in spin-labeled phospholipids and membranes. <i>Journal of the American Chemical Society</i> , 1971 , 93, 314-26	16.4	1473
53	Physics and chemistry of spin labels. <i>Quarterly Reviews of Biophysics</i> , 1970 , 3, 91-136	7	439
52	Motion of fatty acid spin labels in the plasma membrane of mycoplasma. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 1970 , 219, 104-13	3.8	144
51	Spin-labeled hemoglobin derivatives in solution, polycrystalline suspensions, and single crystals. <i>Biochemistry</i> , 1969 , 8, 2580-5	3.2	81
50	Spin-Labeled Membranes. <i>Journal of General Physiology</i> , 1969 , 54, 277-286	3.4	
49	Spin-label determination of enzyme symmetry. <i>The Journal of Physical Chemistry</i> , 1967 , 71, 12-4		14
48	SPIN-LABELED PROTEIN CRYSTALS 1967 , 313-323		3
47	Triplet Excitons in Morpholinium TCNQ. Journal of Chemical Physics, 1965, 43, 497-498	3.9	27
46	Study of Molecular Orbital Degeneracy in C5H5. <i>Journal of Chemical Physics</i> , 1965 , 42, 3931-3934	3.9	60
45	X-Ray Scattering by Triplet Excitons. <i>Journal of Chemical Physics</i> , 1965 , 43, 4126-4129	3.9	11
44	Motion of Localized Triplet Excitons. <i>Journal of Chemical Physics</i> , 1965 , 43, 3780-3794	3.9	42
43	Nitrogen Hyperfine Tensor and g Tensor of Nitroxide Radicals. <i>Journal of Chemical Physics</i> , 1965 , 43, 2909-2910	3.9	203
42	INTERACTION OF THE RADICAL ION OF CHLORPROMAZINE WITH DEOXYRIBONUCLEIC ACID. Journal of the American Chemical Society, 1965 , 87, 2293	16.4	156
41	Pressure Effect on Exciton Magnetic Resonance. <i>Journal of Chemical Physics</i> , 1964 , 41, 898-899	3.9	10
40	Phonon-Coupled Interactions between Paramagnetic Excitons. <i>Journal of Chemical Physics</i> , 1964 , 40, 586-588	3.9	21

39	Ferromagnetism in Solid Free Radicals. <i>Journal of Chemical Physics</i> , 1963 , 39, 1910-1910	3.9	706
38	Quantum States of a Triplet Exciton Gas. <i>Journal of Chemical Physics</i> , 1963 , 39, 252-253	3.9	6
37	Paramagnetic Resonance of Cycloheptatrienyl. <i>Journal of Chemical Physics</i> , 1962 , 37, 1150-1151	3.9	33
36	Theory of Paramagnetic Excitons in Solid Free Radicals. <i>Journal of Chemical Physics</i> , 1962 , 37, 794-798	3.9	61
35	Erratum and Further Comments: Radiation Damage in Organic Crystals. III. Long Polyene Radicals. <i>Journal of Chemical Physics</i> , 1962 , 37, 3008-3008	3.9	9
34	Paramagnetic Excitons in Solid Free Radicals. <i>Journal of Chemical Physics</i> , 1962 , 36, 2393-2397	3.9	76
33	Antiparallel Spin Polarization in Triplet States. Journal of Chemical Physics, 1961, 35, 1520-1521	3.9	21
32	Intramolecular Charge Transfer in Aromatic Free Radicals. <i>Journal of Chemical Physics</i> , 1961 , 35, 508-51	5 3.9	908
31	CH2(COOH) in Malonic Acid. <i>Journal of Chemical Physics</i> , 1961 , 35, 1910-1911	3.9	8
30	Spin-Orbit Coupling in Orbitally Degenerate States of Aromatic Ions. <i>Journal of Chemical Physics</i> , 1961 , 34, 13-16	3.9	69
29	Paramagnetic Excitons in Molecular Crystals. <i>Journal of Chemical Physics</i> , 1961 , 35, 1793-1800	3.9	154
28	Theory of Singlet-Triplet Splittings in Large Biradicals. <i>Journal of Chemical Physics</i> , 1960 , 33, 115-121	3.9	45
27	The Biradical Paradox. <i>Journal of Chemical Physics</i> , 1960 , 33, 1868-1869	3.9	21
26	Spin Densities in Odd Alternant Hydrocarbon Radicals. <i>Journal of Chemical Physics</i> , 1960 , 32, 176-181	3.9	44
25	Radiation Damage in Organic Crystals. II. Electron Spin Resonance of (CO2H)CH2CH(CO2H) in Esuccinic Acid. <i>Journal of Chemical Physics</i> , 1960 , 32, 1535-1539	3.9	723
24	Carbon-13 Hyperfine Splitting in CH(COOH)2. <i>Journal of Chemical Physics</i> , 1959 , 31, 1688-1689	3.9	30
23	Molecular Transfer of Nonequilibrium Nuclear Spin Magnetization. <i>Journal of Chemical Physics</i> , 1959 , 31, 85-88	3.9	20
22	Negative Nuclear Spin-Spin Coupling Constants for Aromatic Protons. <i>Journal of Chemical Physics</i> , 1959 , 30, 126-128	3.9	81

21	Theory of anisotropic hyperfine interactions in Electron radicals. <i>Molecular Physics</i> , 1959 , 2, 129-138	1.7	439
20	Reaction Rates by Nuclear Magnetic Resonance. <i>Journal of Chemical Physics</i> , 1958 , 28, 430-431	3.9	1280
19	Spin Density Matrices for Paramagnetic Molecules. <i>Journal of Chemical Physics</i> , 1958 , 28, 1188-1192	3.9	170
18	Theory of Isotropic Hyperfine Interactions in Electron Radicals. <i>Journal of Chemical Physics</i> , 1958 , 28, 107-117	3.9	777
17	Zero Field Splittings in Atomic Nitrogen at 4.2LK. <i>Journal of Chemical Physics</i> , 1958 , 29, 451-451	3.9	16
16	Spin Densities in the Perinaphthenyl Free Radical. <i>Journal of Chemical Physics</i> , 1958 , 28, 51-53	3.9	65
15	Proton Resonance Shifts in Paramagnetic Metal Aromatic Complexes. <i>Journal of Chemical Physics</i> , 1958 , 28, 749-750	3.9	39
14	Spin Density Matrix for the Allyl Radical. <i>Journal of Chemical Physics</i> , 1958 , 29, 244-245	3.9	13
13	Free Rotation in Solids at 4.2fK. <i>Journal of Chemical Physics</i> , 1958 , 29, 1422-1422	3.9	42
12	Isotropic Nuclear Resonance Shifts. <i>Journal of Chemical Physics</i> , 1958 , 29, 1361-1365	3.9	647
12 11	Isotropic Nuclear Resonance Shifts. <i>Journal of Chemical Physics</i> , 1958 , 29, 1361-1365 Comments on Theory of Isotropic Hyperfine Interactions in Electron Radicals <i>Journal of Chemical Physics</i> , 1958 , 28, 991-992	3.9	10
	Comments on IITheory of Isotropic Hyperfine Interactions in Electron Radicals R. Journal of		
11	Comments on IITheory of Isotropic Hyperfine Interactions in Electron Radicals Radica	3.9	10
11	Comments on Theory of Isotropic Hyperfine Interactions in Electron Radicals Negative Spin Densities in Aromatic Radicals. Journal of Chemical Physics, 1957, 27, 984-985 Rates of Paramagnetic Pulse Reactions by Nuclear Magnetic Resonance. Journal of Chemical Physics	3.9	10
11 10 9	Comments on Theory of Isotropic Hyperfine Interactions in Electron Radicals R Journal of Chemical Physics, 1958, 28, 991-992 Negative Spin Densities in Aromatic Radicals. Journal of Chemical Physics, 1957, 27, 984-985 Rates of Paramagnetic Pulse Reactions by Nuclear Magnetic Resonance. Journal of Chemical Physics, 1957, 27, 230-234 Theory of Nuclear Magnetic Shielding in Molecules. I. Long-Range Dipolar Shielding of Protons.	3.9 3.9 3.9	10 67 53
11 10 9 8	Comments on Theory of Isotropic Hyperfine Interactions in Electron Radicals Regional of Chemical Physics, 1958, 28, 991-992 Negative Spin Densities in Aromatic Radicals. Journal of Chemical Physics, 1957, 27, 984-985 Rates of Paramagnetic Pulse Reactions by Nuclear Magnetic Resonance. Journal of Chemical Physics, 1957, 27, 230-234 Theory of Nuclear Magnetic Shielding in Molecules. I. Long-Range Dipolar Shielding of Protons. Journal of Chemical Physics, 1957, 27, 226-229 Electronic Structure of Sodium-Ammonia Solutions by Nuclear Magnetic Resonance. Journal of	3.9 3.9 3.9	10 67 53 515
11 10 9 8	Comments on IIITheory of Isotropic Hyperfine Interactions in Electron Radicals Negative Spin Densities in Aromatic Radicals. Journal of Chemical Physics, 1957, 27, 984-985 Rates of Paramagnetic Pulse Reactions by Nuclear Magnetic Resonance. Journal of Chemical Physics, 1957, 27, 230-234 Theory of Nuclear Magnetic Shielding in Molecules. I. Long-Range Dipolar Shielding of Protons. Journal of Chemical Physics, 1957, 27, 226-229 Electronic Structure of Sodium-Ammonia Solutions by Nuclear Magnetic Resonance. Journal of Chemical Physics, 1957, 26, 1517-1522 Molecular Transfer of Nonequilibrium Nuclear Spin Magnetization. Journal of Chemical Physics,	3.9 3.9 3.9 3.9	10 67 53 515 47

LIST OF PUBLICATIONS

3	Indirect Hyperfine Interactions in the Paramagnetic Resonance Spectra of Aromatic Free Radicals. <i>Journal of Chemical Physics</i> , 1956 , 24, 764-766	3.9	588
2	Electron Densities in Semiquinones by Paramagnetic Resonance. <i>Journal of Chemical Physics</i> , 1956 , 24, 632-632	3.9	270
1	Dirac Vector Model for Electron Coupled Nuclear Spin Interactions. <i>Journal of Chemical Physics</i> , 1955 , 23, 2454-2454	3.9	43