Stanislav Huszar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1179204/publications.pdf

Version: 2024-02-01

759233 1058476 14 677 12 14 citations h-index g-index papers 14 14 14 885 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An ABC transporter Wzm–Wzt catalyzes translocation of lipid-linked galactan across the plasma membrane in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
2	Structural and Activity Relationships of 6-Sulfonyl-8-Nitrobenzothiazinones as Antitubercular Agents. Journal of Medicinal Chemistry, 2021, 64, 14526-14539.	6.4	16
3	Design, synthesis and evaluation of covalent inhibitors of DprE1 as antitubercular agents. European Journal of Medicinal Chemistry, 2020, 208, 112773.	5.5	21
4	The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discovery Today, 2020, 25, 772-780.	6.4	43
5	Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl- \hat{l}^2 - <scp>d</scp> -ribofuranose $2\hat{a}\in^2$ -Oxidase. Journal of Medicinal Chemistry, 2019, 62, 8115-8139.	6.4	37
6	New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. European Journal of Medicinal Chemistry, 2018, 151, 824-835.	5 . 5	31
7	A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Scientific Reports, 2018, 8, 3187.	3.3	41
8	Copper-related toxicity in replicating and dormant <i>Mycobacterium tuberculosis</i> caused by 1-hydroxy-5- <i>R</i> -pyridine-2(1 <i>H</i>)-thiones. Metallomics, 2018, 10, 992-1002.	2.4	22
9	The EU approved antimalarial pyronaridine shows antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis, 2018, 112, 98-109.	1.9	12
10	A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors. ACS Infectious Diseases, 2017, 3, 428-437.	3.8	34
11	$\mbox{\sc (i) N}$ -Acetylglucosamine-1-Phosphate Transferase, WecA, as a Validated Drug Target in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20
12	The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4446-4452.	3.2	85
13	DprE1 Is a Vulnerable Tuberculosis Drug Target Due to Its Cell Wall Localization. ACS Chemical Biology, 2015, 10, 1631-1636.	3.4	123
14	Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2510-7.	7.1	188