
Chi-Tso Chiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11791705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic disruption of ankyrin-G in adult mouse forebrain causes cortical synapse alteration and behavior reminiscent of bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10479-10484.	3.3	52
2	Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease. Experimental Neurology, 2016, 281, 81-92.	2.0	57
3	The Mood Stabilizer Lithium Potentiates the Antidepressant-Like Effects and Ameliorates Oxidative Stress Induced by Acute Ketamine in a Mouse Model of Stress. International Journal of Neuropsychopharmacology, 2015, 18, .	1.0	47
4	Preclinical and Clinical Investigations of Mood Stabilizers for Huntington's Disease: What Have We Learned?. International Journal of Biological Sciences, 2014, 10, 1024-1038.	2.6	41
5	A New Avenue for Lithium: Intervention in Traumatic Brain Injury. ACS Chemical Neuroscience, 2014, 5, 422-433.	1.7	88
6	Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder. Pharmacological Reviews, 2013, 65, 105-142.	7.1	338
7	Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. Journal of Neurosurgery, 2013, 119, 766-773.	0.9	79
8	Lithium Ameliorates Neurodegeneration, Suppresses Neuroinflammation, and Improves Behavioral Performance in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 362-374.	1.7	117
9	Lentivirally mediated GSK-3β silencing in the hippocampal dentate gyrus induces antidepressant-like effects in stressed mice. International Journal of Neuropsychopharmacology, 2011, 14, 711-717.	1.0	44
10	GSK-3 as a Target for Lithium-Induced Neuroprotection Against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Frontiers in Molecular Neuroscience, 2011, 4, 15.	1.4	134
11	Combined Treatment with the Mood Stabilizers Lithium and Valproate Produces Multiple Beneficial Effects in Transgenic Mouse Models of Huntington's Disease. Neuropsychopharmacology, 2011, 36, 2406-2421.	2.8	126
12	Neuroprotective action of lithium in disorders of the central nervous system. Journal of Central South University (Medical Sciences), 2011, 36, 461-76.	0.1	35
13	Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. , 2010, 128, 281-304.		196
14	μâ€Opioid receptor knockout mice are insensitive to methamphetamineâ€induced behavioral sensitization. Journal of Neuroscience Research, 2010, 88, 2294-2302.	1.3	52
15	Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends in Neurosciences, 2009, 32, 591-601.	4.2	555
16	Methamphetamine-induced behavioral sensitization in mice: alterations inÂμ-opioid receptor. Journal of Biomedical Science, 2006, 13, 797-811.	2.6	31
17	Methamphetamineâ€induced behavioral sensitization in mice: alterations in muâ€opioid receptor. FASEB Journal, 2006, 20, A676.	0.2	0
18	Attenuation of methamphetamine-induced behavioral sensitization in mice by systemic administration of naltrexone. Brain Research Bulletin, 2005, 67, 100-109.	1.4	50

Сні-Тѕо Сній

#	Article	IF	CITATIONS
19	Kainic Acid-Induced Neurotrophic Activities in Developing Cortical Neurons. Journal of Neurochemistry, 2002, 74, 2401-2411.	2.1	16
20	Interleukin-1β enhances bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine tracheal smooth-muscle cells: involvement of the Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway. Biochemical Journal, 2001, 354, 439-446.	1.7	36
21	Mitogenic effect of oxidized low-density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MAPK pathway. British Journal of Pharmacology, 2001, 132, 1531-1541.	2.7	72
22	Tumour necrosis factor-α enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells. Cellular Signalling, 2001, 13, 633-643.	1.7	16
23	P2Y2 receptor-mediated proliferation of C6 glioma cells via activation of Ras/Raf/MEK/MAPK pathway. British Journal of Pharmacology, 2000, 129, 1481-1489.	2.7	85
24	Tumour necrosis factor-α- and interleukin-1β-stimulated cell proliferation through activation of mitogen-activated protein kinase in canine tracheal smooth muscle cells. British Journal of Pharmacology, 2000, 130, 891-899.	2.7	46
25	Lipopolysaccharide enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells. British Journal of Pharmacology, 2000, 130, 1799-1808.	2.7	33
26	Bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine cultured tracheal epithelial cells. British Journal of Pharmacology, 1999, 126, 1341-1350.	2.7	12
27	Uncoupling of bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization by phorbol ester in canine cultured tracheal epithelial cells. British Journal of Pharmacology, 1998, 125, 627-636.	2.7	4
28	Inhibition of 5-hydroxytryptamine-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine cultured tracheal smooth muscle cells by phorbol ester. British Journal of Pharmacology, 1997, 121, 853-860.	2.7	13
29	Purinoceptor-stimulated phosphoinositide hydrolysis in Madin-Darby canine kidney (MDCK) cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 1-7.	1.4	11